Finding Conflict Sets and
Backtrack Points in CLP(R)

Jennifer Burg

Wake Forest University
Winston-Salem, NC 27109
burg@mthcsc.wfu.edu

Sheau-Dong Lang
Charles E. Hughes
University of Central Florida
Orlando, FL 32816
lang@cs.ucf.edu
ceh@cs.ucf.edu

Abstract

This paper presents a method for intelligent backtracking in CLP(®). Our
method integrates a depth-first intelligent backtracking algorithm developed
for logic programming with an original constraint satisfaction algorithm
which naturally generates sets of conflicting constraints. We prove that
if CLP(R) is assumed to cover strictly the domain of real numbers, then
the constraint satisfaction algorithm provides minimal conflict sets to be
used as a basis for intelligent backtracking. We then extend the backtrack-
ing method to cover a two-sorted domain, where variables can be bound to
either structured terms or real numbers. We discuss a practical implementa-
tion of the algorithm using a generator-consumer approach to the recording
of variable bindings, and we give an example of a CLP(R) program which
benefits significantly from intelligent backtracking.

1 Introduction

CLP(R) is a constraint logic programming language in which constraints can
be expressed in the domain of real numbers. Even when these constraints are
restricted to linear equations and inequalities®, this language has proven to
be expressive enough for practical applications such as scheduling problems,
options trading, critical path analysis, resolution of temporal constraints,
and Al-type puzzles [?, ?]. However, the range of problems which are solved
efficiently by CLP(R) is limited by the possible explosion of the search space
as well as the complexity of the constraint satisfaction algorithm. A num-
ber of approaches to speeding up execution of CLP(®) programs have been

!with, optionally, a mechanism for *delaying” non-linear constraints until sufficient
variables are bound to make them linear

explored, including the fine-tuning of simplex-based constraint satisfaction
algorithms, compilation [?], parallelism [?], and intelligent backtracking, the
subject of this paper.

Intelligent backtracking seems a particularly appropriate strategy for
CLP(R), since the real-number domain lends itself quite naturally to the
identification of conflict sets. We can illustrate this point with the CLP(R)
program in Figure 1, which solves the following cryptarithmetic puzzle:

B B

+ B A
LD C

When node 4 is exited, A is 9 and B is 8. Upon exit from node &', ('
is redundantly given the value 7. At node 15, we fail to find a consistent
value for D. Clearly, this failure was inevitable as soon as A was given the
value 9 and B the value 8, and trying new values for (' is wasted effort. A
useful intelligent backtracking algorithm should recognize this and backtrack
directly to node 4.

The backtracking method which we propose for CLP(R) prunes obvious
failure paths from the search tree by identifying conflict sets during the

constraint satisfiability check. The first time a failure occurs at node 17, the
relevant constraints in the tableau are (assuming the unification of variables)
(1)A>0,(2)B>0,(3)C>0,(4)D >0,(5)A<9,(6)B<9,(7)C <9,
(8)D<9,(9)A+B=10«CA+C,(10) B+ B+CA=10*«E+ D,
(1) EF=1,(12)CA=1,(13) A=9,(14) B=8,(15) A— B >0,
(16)C=7,(1T)B-C>0,(18) A—C>0,(19) D=9,(20) D < A.

A failure is signaled when D is given the value 9 but at node 16 the con-
straints D < A and D > A both fail. We will show that our constraint
satisfaction algorithm can easily identify the source of the conflict (equa-
tions 20, 14, 13, 12, 11, 10, and 9), and as execution retreats from node 15
this information sends us directly back to the last node where one of the
guilty equations was introduced, node 4.

The compatibility between CLP(R) and intelligent backtracking has been
recognized by DeBacker and Beringer [?], Hogger and Kotzamanidis [?], and
Burg, Lang, and Hughes [?, ?]. The roots of the research can be traced
to Bruynooghe and Pereira [?] and Cox [?], who developed strategies for
intelligent backtracking in logic programming. More recent work includes
generator-consumer approaches [?] and the DIB (depth-first intelligent back-
tracking) algorithm of Codognet, Codognet, Filé, and Sola [?, ?]. DeBacker
and Beringer give a recursive formulation of the DIB algorithm in [?], point-
ing out that it is applicable to any constraint logic programming language in
which conflict sets can be identified upon failure. However, they stop short
of integrating the algorithm into CLP(R) since they do not allow for the
possibility of structured terms in the domain. With such a restriction, the
CLP(R) they assume is not the language originally conceived by Jaffar et al.,
who describe CLP(R) as based upon a two-sorted domain of real numbers
and structured terms [?]. The two-sorted domain yields a more interesting,
expressive language, and it is worthwhile to extend intelligent backtracking
to this context. Our contribution to this research area is to integrate intelli-
gent backtracking into the two-sorted domain of CLP(R), basing our method
on an original constraint satisfaction algorithm and an accompanying proof
that minimal conflict sets are generated directly.

2 Depth-First Intelligent Backtracking

We begin by sketching the DIB algorithm which forms the framework of our
backtracking method. Consider the example in Figure 2. At each failure
node 7, we identify a set containing conflicting constraints associated with
the failure. Call this set the conflict set for node i. The source of a constraint
is defined as the node to which execution must return in order to remove the
constraint from the tableau. The source of a goal literal is defined similarly.
The backtrack set for failure node 7 is defined as the union of the source
numbers for all the constraints in ¢’s conflict set. The backtrack set tells us
the nodes at which new execution paths ought to be tried. The idea is that

if node ¢ receives a failure message from its child node, but ¢ is not in the
accompanying backtrack set, then constraints introduced at ¢ had nothing
to do with the conflict, and trying another branch from there is useless.

Say that when we attempt to execute goal ¢ at node 5, we fail on both
branches. When the conflict is detected at node 6, the backtrack set {2,5}
is passed up and stored at node 5. Then, node 5 tries another branch to
execute goal t. Again, t fails, and the backtrack set {1,5} is returned to node
5, where it is unioned with {2,5}. At this point, node 5 has no more paths
to try, so 5 is deleted from the collected set. Note that before this backtrack
set {1,2} can be sent up the tree, the source of node 5’s leftmost goal must
be included in it, yielding {1,2,4}. This is because it is goal ¢ which failed,
and when we go back to node 4 we remove t from execution. If 4 were not in
the backtrack set returned to node 4, node 4 would not try another branch
and a solution could be missed. In our example, re-execution of goal s at
node 5" returns the backtrack set {2,4} to node 4. Since node 4’s leftmost
goal, s, was in execution from the root of the search tree, there is nothing to
add to this backtrack set, and node 3 receives the set {1,2}. At this point,
node 3 knows that it is useless to try another branch, and it immediately
fails, passing the backtrack set {1,2} up to node 2.

3 The Constraint Satisfaction Algorithm

The implementation of a CLP(®) interpreter can be divided into two mod-
ules: an inference engine, which performs resolution; and a solver, which
checks the satisfiability of linear constraints in the real number domain.
To describe this algorithm, we use R and M to denote the tableau of
constraints.? R represents the constraints as they first appeared to the

2For convenience, we speak interchangeably of the tableau as an ordered list of rows,
a set of rows, or a matrix. M; denotes the i*" row in the tableau, while M; ; denotes the
coefficient of the ;" variable in the " row.

solver, in their canonical input form. Before being given to the solver, in-
equalities are transformed to equations with slack variables, where each slack
variable is constrained to take on only non-negative values. M is the “work-
ing copy” of the tableau, upon which Gaussian elimination and the simplex
method are performed in order to maintain M in a solved form.

We call our constraint satisfaction algorithm checksat. Beginning with
a tableau M of m — 1 constraints which, taken together, are known to be
satisfiable, checksat is given a new constraint to process, identical copies
being placed in rows R,, and M,,. Fach row M; in the satisfiable tableau
has a variable that is implicitly being “solved for” in the row. We call this
variable the basic variable in the row. If the basic variable is a program
variable (unconstrained), then it is the first variable in the row.” If the basic
variable is a slack variable, then it does not appear in any other row which
has only slack variables (all-slack rows). The constant in each row in the
tableau is maintained as non-negative.

The tableau is maintained in this solved form in the following manner.
First, basic unconstrained variables are substituted out of M,, until the
first non-basic unconstrained variable is encountered, if one exists. Then
there are four cases to consider. (1) If the equation has reduced to 0 = 0,
it is redundant and M,, and R, are discarded. (2) Else, if it reduces to
a = b where a and b are constants and a # b, it is in conflict with the
rest of the tableau. (3) Else, if a non-basic unconstrained variable has been
encountered, it is made basic. (4) Else, if only slack variables remain, basic
slack variables are substituted out of M,,, the all-slack rows are isolated,
and we perform the first phase of the two-phase simplex method on them
to determine if a slack variable can be made basic. We know that a slack
variable cannot be made basic if we reach a state where the coefficients for
all the slack variables in the new row are non-positive while the constant is
positive. In this case, the tableau is unsatisfiable. We give the full algorithm
and a proof of correctness in [?].

This algorithm has certain advantages over other algorithms proposed
for CLP(R). First, the operations of Gaussian elimination and the simplex
method are cleanly separated, making the algorithm simple to describe, im-
plement, and prove correct. The clean dichotomy also increases the algo-
rithm’s efficiency in that only the all-slack rows are involved in the sim-
plex procedure. Furthermore, only the forward elimination part of Gaussian
elimination is used to uncover linear dependencies in the tableau, back sub-
stitution being delayed until the end of a successful solution path. Forward
elimination is often sufficient for the satisfiability check, and we are saved
the expense of back substitution (which serves only to make the solution
more explicit) on failure paths. Most importantly for our purposes here, we
can show that this algorithm naturally generates minimal conflict sets.

For efficiency reasons, variables are ordered according to their time of creation, newer
variables placed before older ones, and program variables before slack variables. To avoid
confusion, we do not show the newer-to-older ordering in the examples below.

4 Collecting Conflict Sets

To identify a conflict set when checksat uncovers a conflict, we keep a record
of row operations. This process can easily be described with a matrix repre-
sentation. Without loss of generality, we can assume that the solver is given
m constraints to process, and it processes them one at a time, finding a con-
flict when it gets to the m!” one. R is an m x n + 1 matrix representing the
original forms of the rows in the tableau. M is a dynamic m X n + 1 matrix
representing the rows as they change state during checksat. We will use an
m X m matrix B to record the row operations which transform R to M.
Initially, B is the identity matrix. FEach time we add a multiple of one row
to another during Gaussian elimination or simplex, as in M; «— c* M; + M;
we also perform B; «— c¢* B; + B;. By this means, we maintain the relation
M = B« R. In particular, say that the last row of B is [By, 1, ..., Bym)-
Then we have the relation

Mm IBm71*R1—|-...—|-Bm7m*Rm (1)

(where B, ,, is either 1 or -1). When a conflict is uncovered in M,,, we
claim the set of rows C' = {R; | By, ; # 0} constitutes a conflict set.*

Figure 3 illustrates how the source of conflict can be identified by our
method. Note that the i** program variable to be encountered during pro-
gram execution (not including variables eliminated when redundancies or
conflicts are uncovered) is renamed X; at the time of creation. Note also

*Implicitly, the conflict set C also contains the inequality s; > 0 for every slack variable
s; 1n the rows in C.

that unifications are entered as equations into the tableau. When the con-
flict is uncovered here, Bg identifies Mg as a linear combination of rows Rg,
Rs, R7, Rg, Rs, R4, Ry, and Ry. The sources of these rows are nodes 4, 2,
and 1, indicating that node 3 had nothing to do with the conflict. Thus, we
can backtrack directly from node 4 to node 2.

5 Minimal Conflict Sets

We now show that the conflict set (' identifiable through B is minimal; that
is, no proper subset of (' is also a conflict set. In the following, we will treat
an equation, say qi@1 + ...+ qpx, = b, as a row vector [qy,...,q,,b], and
also as an algebraic expression b — (121 + ...+ ¢,2,,). The following lemma
summarizes the end result in the tableau when a conflict is uncovered.

Lemma 5.1 Suppose that during checksat, the current tableau

Q ={My,...,M,,_1} is in solved form and is consistent, but the new row in
its original form, denoted R, is found to be inconsistent with () when R,
s transformed to its current form M,,. Then, writing M., as an expression,
My = My 1214 ..+ My, 2, +0, the following holds: If the inconsistency is
found during the forward elimination step, then all M, ; = 0,1 <7 <mn, and
b > 0; otherwise, if the inconsistency is found during simplex, then b > 0,
My, >0 for all1 <1 <mn, and for all M,, ; > 0, the corresponding variable
x; must be a slack variable.

As a result of Lemma 1, when the algorithm checksat uncovers a conflict
in row M, in either case, we have

M, = Z 8+ b (2)
s, €D

where ¢; > 0, D is either empty or contains slack variables only, and b > 0.
We illustrate equations (1) and (2) using an example in which a conflict
is found during simplex. Consider the following tableau.

R13X121 R5§X5§1
RQ:XQZ:[R6§X1—|-X2—|-X3:5
R3§X3§1 R7§X3—|-X421
R4§X4§1 R8§X1—|-X5I7

The five inequalities are converted to equations with slack variables. This
tableau shows the resulting equations, with basic variables identified by *.

X1 X2 X3 X4 X5 Sl SQ 53 S4 55 b
R,y 0 O O O -1 0 0 0 01
Ryy O 1* 0 0O 0 0 -1 0 0 0|1
Ry O 0 1 0 O O O 1 0 0}1
Ryy O 0 O 1 0 0 0 0 1 0|1
Rs{ O O O 0 1 0 0 0 0 11

To process Rg, we substitute out basic variables Xy, X5, and X3, The
resulting all-slack row is kept in a separate tableau. Simplex chooses S5 as
a basic variable in it. Similarly, when R; is processed, the basic variables
X3 and X4 are substituted out, resulting in an all-slack row —53 — 54 = —1.
Then, negating both sides yields the row 53 4+ 54 = 1. The following shows
the tableau of all-slack rows with the basic variable identified.

‘ Sl SQ 53 S4 SS ‘ b
M1 19 -1 0 0]2
ML O 0 1 1 o0f1

At this point, the equations Ry through R; are consistent. To process
Rg, we first substitute out the basic variables X; and X5, resulting in the
all-slack row M{ added to the tableau.

Sy Sy S3 Sy Ss|b
M| 1 19 =1 0 0]2
MO 0O 1 1% o0]1
M{| 1 0 0 0 —1]5

To determine the consistency of the system of R through Rg, we need to
apply simplex to the all-slack rows. The essence of the simplex procedure is
to treat M as an objective function to be minimized, given the solution space
determined by M{ and M.. When the standard pivoting procedure is applied
twice, the tableau yields a minimized objective function Mg = 24+.55+54+955.

S1 52 Sz S4 S5 b
Mg | 17 1 0 1 0]3
M| 0 0 1* 1 011
Mg| 0 -1 0 -1 —-1/|2

Keeping track of the row operations, we obtain the following algebraic
identity, treating each row (LHS = RHS) as an expression, RHS — LHS.
Mg = =M}t — M} + M}
=—(—R1—Ry— Rs+ Rs) — (Rs+ Ry — R7) + (—R1 — R5 + Ry)
=Ry — Ry — Rs — Rg + Rr + Ry
=245+ 54+ 55
As noted in (1), M,, is a linear combination of rows in their original
form. Combining (1) and (2) yields

M, = Z B, R; = Z c;isi+ 0
R;eC s;€D

(3)
Since any solution satisfying the equations R; € (', when substituted
into (3), would yield

0= Z ;s +b>0,
s, €D

clearly the set C' = {R;|B,,; # 0} forms a set of conflicting equations. It is
obvious that C' contains equation R,,, because {Ry,..., R;—1} is known to
be satisfiable. To prove that the set is a minimal conflict set, we first note
that since (3) is an algebraic identity, those slack variables s; appearing on
the righthand side must also appear on the lefthand side. Since a unique slack
variable is introduced from its “source” inequality, the slack variables on the
righthand side of (3) identify exactly those inequalities whose corresponding
equations appear on the lefthand side of (3). We now prove that C forms a
minimal conflict set.

Theorem 5.2 Ghiven a satisfiable tableau of m — 1 rows, if algorithm check-
sat uncovers a conflict when it processes a new row R,,, then
C ={Ri|By,; # 0} constitutes a minimal conflict set.

Proof: Suppose that C' is not minimal. That is, there exists a set €’ which
is a proper subset of (', where C’ is also a conflict set. The set C’ must
contain R,, because the previous m — 1 rows Rq,..., R, _1 are satisfiable.
Applying the algorithm checksat to C' will lead to a relation similar to (3),
according to Lemma 1:

Y BLRi=) s+t (4)

R;eC’ s; €D’

Without loss of generality, we assume that in both (3) and (4), the coef-
ficient for R, on the lefthand side is 1. Combining (3) and (4) yields

Rn=— > BuiRi+) csi+b
R;eC—{Rm} si€D

RiEC’—{Rm} s, eD’

The tableau {My,..., M,,_1} is in solved form when a conflict with M,,
is uncovered; thus, the basic variables in {My,..., M,,_1} can be solved in
terms of the non-basic variables. Substituting these solutions for the basic
variables into (3), using the fact that R = B7'M, all the expressions R;,
1 <¢<m-—1, would vanish. Thus, after substitution, equation (3) becomes

R, = Z 8+ b
s, €D

where R, = (R, after substitutions).

Note that the expression

Z 8+ b

s, €D

in (5) is not affected by the substitutions because the variables in D are
non-basic. Similarly, the same set of substitutions into (4) yields

7 7
R, = Z cisi+b
s, €D’

because these same substitutions erase all R;’s, 1 < ¢ < m — 1. Therefore,

we have
Z ¢isi +b= Z chs; + b (6)
si€D s; €D’

Since (6) is an algebraic identity, the two sides must be identical expres-
sions. Thus D = D', ¢; = ¢, for each s, € D, and b =¥'.
Substituting (6) into (5) yields

> BpiRi= > BL.R;

Ri€C—{Rm} R;eC'—{Rm}

which results in a non-trivial dependency among the rows R; € (', because we
assumed C is a proper subset of C'. This dependency relation contradicts the
fact that there are no redundant rows in ', because there are no redundant
rows in the tableau {My,..., M,,}. This contradiction proves the theorem.

6 A Two-Sorted Domain

Some implicit assumptions were made in Figure 3 in order to simplify the
initial discussion of our backtracking method. First, we assume that variable
bindings are entered as equations in the tableau. If binding information is
not integrated into the collection of conflict sets, solutions may be missed.
In our example, U +V = 5 from clause p is in conflict with U/ +2V = 8 from
clause r, but only in the context of the bindings equating the original U and
V', which occurred when goal ¢ was executed. The presence of equations Rs
and Rg in the conflict set ensures that node 2 is in the backtrack set, as it
should be. A second simplifying assumption is that all variables are type real,
s0 there is no need to check for type clashes, nor to account for the recursive
unification of arguments to structured terms. In this section, we abandon
this second assumption and deal with the two-sorted domain, temporarily
retaining the method of recording variable bindings as equations.

To handle variables of two types in CLP(®), we define an abstract su-
pertype term, of which types structured term and real number are subtypes.
Equality between terms is defined as follows:

If ¢ is a structured term and c is a real number, then ¢ # ¢. (An attempt
to unify terms of different types is called a type clash.)

If ¢t and u are structured terms and ¢ = u, then their function symbols
are identical, ¢ and u both have n arguments (n > 0) and for 1 < ¢ < n,
v; = w;, where v; is the " argument of ¢, and w; is the ith argument of u.

Equality over real numbers is defined in the usual manner.

Since bindings are handed to the solver as equations, we now have equa-
tions over terms in the tableau. Fach unification equation v; = w; created
between the i'* pair of arguments to two unified structured terms is called a
recursive unification equation. Equations and inequalities found in the body
of a clause are referred to as clause equations.

We propose algorithm enterclause to generalize the work of the solver to
a two-sorted domain. This algorithm initially processes all unifications and
clause equations as equations over terms. enterclause uses a generalized pro-
cess of forward elimination, making our method for collecting conflict sets
directly applicable. Forward elimination is now divided into three stages.
The first stage, applicable to unification equations, dereferences variables
by following binding chains. The second and third stages are applied to
equations with real number expressions on both sides after dereferencing,
or clause equations which are input in this form. In the second stage, all
variables are identified as type real. The third stage continues forward elim-
ination in the domain of reals using checksat, applying simplex if necessary.

In all three stages, we maintain R, M, and B as before. It should be
clear that in the simple case, where no recursive unification equations are
involved, our method of collecting backtrack sets generalizes directly to the
two-sorted domain. Consider the case where a type clash is uncovered during
dereferencing. As long as we are processing equations over terms, we can
view each structured term or real number expression simply as a constant.
Say that X; is bound to 3, X3 is bound to ¢(X3) and then we attempt to
bind X, to X;. This situation is represented by the following tableau:

R M B
X1 - 3 Xf - 3 Rl
Xo=9(X3) X5 =9(X3) R
Xo =Xy 9(X3)=3 Rs—Ry+ Ry

By our usual method of recording row operations, the conflict set is
identified as { Ry, R2, R3}. In the case where an equation consists entirely of
real number expressions, extending our method for recording row operations
from the dereferencing step to the checksat algorithm is also straightforward.

We now must account for the presence of recursive unification equations
in the tableau. Since a recursive unification equation can be introduced as a
result of binding chains, we are interested in the history of such an equation,
identifying nodes where bindings which eventually entailed the equation can
be undone. Consider the example in Figure 4, where f(X3) = f(X;) is the
result of forward elimination on Rqq. Since f(X3) = f(Xy) results from the
linear combination of Rq1, Ri9, Rs, R5, and R4, these rows make up the
history of the recursive unification equation Xy = Xj.

More generally, the history of the m'® row, HIST(R,,), tells us the
constraints which brought R,, into existence. Say that R, is a recursive

unification equation which arose when two structured terms were unified in

M;. Let BROW S(i) denote {Ry|B;x # 0}. Then HIST(R,,) is defined as

HIST(R,,) = UJ HIST(R;).
R;€BROWS(4)

If R,, is a non-recursive unification equation or a clause equation, then
HIST(R,,)={R,}. If a new row R, is found to be inconsistent with the
previous m — 1 rows, then we identify a conflict set containing R,, as

CONFL(R,,) = UJ HIST(R;).
R;EBROW S(m)

If R, is not in conflict with the rest of the tableau, CONFL(R,,) = {}.

It should be noted that CON FL(R,,) is not necessarily minimal. (See
[?] for an example.) However, it suffices to identify any conflict set to apply
the DIB algorithm without missing a solution, and a significant degree of
intelligent backtracking can be achieved without minimality.

7 A Generator-Consumer Approach

We have shown how our method for collecting conflict sets can be extended
to account for structured terms. This method is based upon the recording of
unifications as equations in the tableau, an admittedly ineflicient strategy.
We now offer a more efficient approach arising from the following observation.

Let the ancestor path of a goal literal p be defined as an ordered set of
node numbers {ng, ny,...,n,} where ng is the number of the node where p
is the leftmost goal, and for 1 < ¢ < m, n; is the node number of the source
of the leftmost literal at node n;_;. If the source of the leftmost literal at
node n; is 0, then m = i+ 1. The source of a variable which is created when
goal pis executed is the node where goal p is leftmost. The ancestor path of
a variable is the ancestor path of the goal literal being executed when the
variable is created. Consider the example in Figure 5. Here, the source of X5
is node 7 and its ancestor path is {7,3, 1}. Equations Xy 4+ X3 = 5 and X5+
Xg = 6 are in conflict, but only in the context of the bindings which occurred
at nodes 7 and 3. By our previous method, the equations representing the

bindings would be part of the conflict set. However, putting the source of
these equations in the backtrack set introduces redundant information. If we
fail on all paths from node 7, the DIB algorithm requires that we place the
source of goal p, node 3, in the backtrack set. If we fail at node 3, the source
of the goal ¢, node 1, is placed in the backtrack set. As failure continues,
we will always backtrack through the ancestor paths of the failing goals,
precisely the nodes associated with the input bindings. Thus, we need only
record extra “stopping places” along the way so as not to miss a solution.
That is, we need to mark a variable binding only if that binding occurs at
some node after the node where the variable was created. Such a situation
is illustrated by Figure 3, where we need to mark the binding of Xy to X;
as having occurred at node 2.

By this reasoning, we can simplify our method for tracing bindings. Let
us represent variable bindings by pointers through the variable space rather
than equations. Using a dereferencing procedure analogous to our forward
elimination procedure in checksat, we follow the binding chains of the vari-
ables being unified, and if there is at least one unbound variable at the ends
of these chains, we bind the newer variable to the other term.

Analogous to our method of recording row operations during Gaussian
elimination, we trace the reasons for each variable X;’s binding in a generator
set (denoted GEN (X)), that is, a set of nodes where alternative paths can
be tried in order to undo the binding. For any variable X;, if X; receives its
binding at the node where it is first created, then G E N (X;) is the empty set.
Otherwise, let p be the goal being executed when X; receives its binding, let
node n be the node where p is leftmost, and let V' be the set of variables

whose dereferencing led to the binding of X;. In the case where X;’s binding
is being changed during execution of some node after the node where X; was
created,

GEN(X;)=(|J GEN(Xp)U{n}
XreVv

Thus, we collect generator sets during dereferencing and store the col-
lected set with the variable which is eventually bound, if a binding is made.
If dereferencing of a unification leads us to two structured terms requiring
recursive unifications, we carry the generator set along with each recursive
unification and continue the dereferencing in the same manner. If derefer-
encing eventually uncovers a conflict, the generator set thus collected tells us
nodes not on the ancestor path of the literal being executed, but where we
can try another path of execution with the possibility of finding a solution.

In Figure 6, X5 is bound to X; when r is executed . Since X5’s binding is
being changed, it is marked with the generator set {4}, containing only the
source of r. When Xg is unified with 2 at node 6, we use the binding of X,
to X1 in the dereferencing, and the generator set is {4} U {6} = {4,6}. We
find a conflict when we later attempt to unify X; with 3, and the generator
set becomes {4,6,8}, including the source of the goal just executed.

This method takes a generator-consumer approach to intelligent back-
tracking, similar to [?], by identifying nodes which generate bindings for
earlier nodes. Our method optimizes the generator-consumer approach by
recognizing that bindings generated for a node by its “ancestor” nodes need
not be recorded, since the ancestor nodes will automatically be included in

the backtrack set by the DIB algorithm. We can integrate this approach
into CLP(R)’s constraint satisfaction algorithm by modifying our definition
of the history of a clause equation so that it consists of node numbers rather
than rows. When an equation is being prepared for the solver, the variables
therein are dereferenced in the manner described above. Let V be the set of
all the variables dereferenced when the equation is prepared for the solver.
Then the history for the equation when it enters the tableau consists of

| GEN(Xi)U{n}
XreVv

where n is the node number of the source of the equation. With this def-
inition for the history of an equation, we can again use B to identify a
backtrack set when a conflict appears. If row R,, is found to be inconsistent
with a satisfiable tableau of m — 1 rows, then we identify the backtrack set
associated with the conflict as

UJ HIST(R;).
R;EBROW S(m)

8 Implementation

We have implemented a CLP(R) interpreter in C using checksat. The tableau
is stored in R and a working copy of the solved form is maintained in M,
with row operations recorded in B and conflict sets thereby generated. In a
run of the Figure 1 program, equations 19, 14, 12, 11, and 10 are correctly
identified as constituting a conflict set at node 15, while equations 20, 14,
13, 12, 11, 10, and 9 constitute the conflict set at node 17. We have also
installed the DIB algorithm into the inference engine’s backtracking mecha-
nism and integrated the identification of conflict sets between the solver and
the inference engine. Tests runs on the canonical cryptarithmetic problem
show a 14% speedup despite the overhead. We note that the cost of our
intelligent backtracking mechanism is reasonable. Only matrix B is required
for storing row operations. If we further optimize the algorithm by employ-
ing the revised simplex method, we get minimal conflict sets at no added
expense, since in the revised simplex method the tableau is represented by
the operations performed on it rather than by its current state [?]. The trac-
ing of variable bindings requires only (1) a comparison of the node number
of the variable being bound to the current node number, (2) the storing of a
generator set for each variable, and (3) the unioning of generator sets during
dereferencing. In many cases, the generator sets will be empty. In the Fig-
ure 1 example, a small amount of extra bookkeeping results in a significant
benefit in intelligent backtracking, since each of nodes 14, 12, 11, 10, 9", &',
6 and 5 is a choice point. We conclude that our constraint satisfaction algo-
rithm and technique for tracing variable bindings combine to form a feasible
intelligent backtracking algorithm for the two-sorted domain of CLP(R).

References

[1]

[10]

[11]

[12]

[13]

Bruynooghe, M., and L. Pereira. Deduction revision by intelligent back-
tracking. In J. Campbell, ed. Implementations of Prolog, Ellis Horwood,
1984.

Burg, J. Parallel execution models and algorithms for constraint logic
programming over a real-number domain. PhD Dissertation, University
of Central Florida, December 1992.

Burg, J., S.-D. Lang, and C. Hughes. Finding conflict sets and back-
track points in CLP(®). Technical Report TR-CS-93-01, Wake Forest
University, Winston-Salem, NC. Nov. 1993.

Codognet, C., P. Codognet, and G. Filé. Yet another intelligent back-
tracking method. Proc. of the Fifth Int. Conf. and Symp. on Logic
Programming, (Seattle, 1988): 447-465.

Codognet, P. and T. Sola. Extending the WAM for intelligent back-
tracking. Proc of the Fighth Int. Conf. on Logic Programming, (Paris,
France, 1991): 127-141.

Cox, P. Finding backtrack points for intelligent backtracking. In J.
Campbell, ed. Implementations of Prolog, Ellis Horwood, 1984.

DeBacker, B. and H. Beringer. Intelligent backtracking for CLP lan-
guages: An application to CLP(R). Proc. of the international sympo-
stum on logic programming. (San Diego, Oct. 1991), 405-419.

Heintze, et al. The CLP(R) programmer’s manual, Version 1.2. IBM
Thomas J. Watson Research Center, Sept. 1992.

Hogger, C., and A. Kotzamanidis. Aspects of failure analysis in a
CLP(R) system. Internal Report, Imperial College, London, June 1993.

Jaffar, et al. An abstract machine for CLP(R). Proc. of SIGPLAN 92
conference on programming language description and implementation.
(San Francisco, May 1992), 128-139.

Jaffar, et al. The CLP(R) language and system. ACM transactions on
programming languages and systems 14, 3 (July 1992), 339-395.

Kumar, V., and Y.-J. Lin. An intelligent backtracking scheme for Pro-
log. Proc. of the international symposium on logic programming. (Sept.
1987), 406-414.

Luenberger, D. Linear and Nonlinear Programming. 2nd ed. Reading,

Mass.: Addison-Wesley.

