
Finding Con�ict Sets and
Backtrack Points in CLP���

Jennifer Burg

Wake Forest University
Winston�Salem� NC �����
burg	mthcsc
wfu
edu

Sheau�Dong Lang

Charles E� Hughes

University of Central Florida
Orlando� FL ����

lang	cs
ucf
edu
ceh	cs
ucf
edu

Abstract

This paper presents a method for intelligent backtracking in CLP���
 Our
method integrates a depth��rst intelligent backtracking algorithm developed
for logic programming with an original constraint satisfaction algorithm
which naturally generates sets of con�icting constraints
 We prove that
if CLP��� is assumed to cover strictly the domain of real numbers� then
the constraint satisfaction algorithm provides minimal con�ict sets to be
used as a basis for intelligent backtracking
 We then extend the backtrack�
ing method to cover a two�sorted domain� where variables can be bound to
either structured terms or real numbers
 We discuss a practical implementa�
tion of the algorithm using a generator�consumer approach to the recording
of variable bindings� and we give an example of a CLP��� program which
bene�ts signi�cantly from intelligent backtracking


� Introduction

CLP��� is a constraint logic programming language in which constraints can
be expressed in the domain of real numbers
 Even when these constraints are
restricted to linear equations and inequalities� � this language has proven to
be expressive enough for practical applications such as scheduling problems�
options trading� critical path analysis� resolution of temporal constraints�
and AI�type puzzles ��� ��
 However� the range of problems which are solved
e�ciently by CLP��� is limited by the possible explosion of the search space
as well as the complexity of the constraint satisfaction algorithm
 A num�
ber of approaches to speeding up execution of CLP��� programs have been

�with� optionally� a mechanism for �delaying� non�linear constraints until su�cient

variables are bound to make them linear



explored� including the �ne�tuning of simplex�based constraint satisfaction
algorithms� compilation ���� parallelism ���� and intelligent backtracking� the
subject of this paper

Intelligent backtracking seems a particularly appropriate strategy for

CLP���� since the real�number domain lends itself quite naturally to the
identi�cation of con�ict sets
 We can illustrate this point with the CLP���
program in Figure �� which solves the following cryptarithmetic puzzle�

B B

� B A

E D C

When node � is exited� A is � and B is �
 Upon exit from node ��� C
is redundantly given the value �
 At node ��� we fail to �nd a consistent
value for D
 Clearly� this failure was inevitable as soon as A was given the
value � and B the value �� and trying new values for C is wasted e�ort
 A
useful intelligent backtracking algorithm should recognize this and backtrack
directly to node �

The backtracking method which we propose for CLP��� prunes obvious

failure paths from the search tree by identifying con�ict sets during the



constraint satis�ability check
 The �rst time a failure occurs at node ��� the
relevant constraints in the tableau are �assuming the uni�cation of variables�
��� A � �� ��� B � �� ��� C � �� ��� D � �� ��� A � �� �
� B � �� ��� C � ��
��� D � �� ��� A�B � �� � CA� C� ���� B �B � CA � �� �E �D�
���� E � �� ���� CA � �� ���� A � �� ���� B � �� ���� A� B � ��
��
� C � �� ���� B � C � �� ���� A� C � �� ���� D � �� ���� D � A

A failure is signaled when D is given the value � but at node �
 the con�
straints D � A and D � A both fail
 We will show that our constraint
satisfaction algorithm can easily identify the source of the con�ict �equa�
tions ��� ��� ��� ��� ��� ��� and ��� and as execution retreats from node ��
this information sends us directly back to the last node where one of the
guilty equations was introduced� node �

The compatibility between CLP��� and intelligent backtracking has been

recognized by DeBacker and Beringer ���� Hogger and Kotzamanidis ���� and
Burg� Lang� and Hughes ��� ��
 The roots of the research can be traced
to Bruynooghe and Pereira ��� and Cox ���� who developed strategies for
intelligent backtracking in logic programming
 More recent work includes
generator�consumer approaches ��� and the DIB �depth��rst intelligent back�
tracking� algorithm of Codognet� Codognet� Fil�e� and Sola ��� ��
 DeBacker
and Beringer give a recursive formulation of the DIB algorithm in ���� point�
ing out that it is applicable to any constraint logic programming language in
which con�ict sets can be identi�ed upon failure
 However� they stop short
of integrating the algorithm into CLP��� since they do not allow for the
possibility of structured terms in the domain
 With such a restriction� the
CLP��� they assume is not the language originally conceived by Ja�ar et al
�
who describe CLP��� as based upon a two�sorted domain of real numbers
and structured terms ���
 The two�sorted domain yields a more interesting�
expressive language� and it is worthwhile to extend intelligent backtracking
to this context
 Our contribution to this research area is to integrate intelli�
gent backtracking into the two�sorted domain of CLP���� basing our method
on an original constraint satisfaction algorithm and an accompanying proof
that minimal con�ict sets are generated directly


� Depth�First Intelligent Backtracking

We begin by sketching the DIB algorithm which forms the framework of our
backtracking method
 Consider the example in Figure �
 At each failure
node i� we identify a set containing con�icting constraints associated with
the failure
 Call this set the con�ict set for node i
 The source of a constraint
is de�ned as the node to which execution must return in order to remove the
constraint from the tableau
 The source of a goal literal is de�ned similarly

The backtrack set for failure node i is de�ned as the union of the source
numbers for all the constraints in i�s con�ict set
 The backtrack set tells us
the nodes at which new execution paths ought to be tried
 The idea is that



if node i receives a failure message from its child node� but i is not in the
accompanying backtrack set� then constraints introduced at i had nothing
to do with the con�ict� and trying another branch from there is useless


Say that when we attempt to execute goal t at node �� we fail on both
branches
 When the con�ict is detected at node 
� the backtrack set f�� �g
is passed up and stored at node �
 Then� node � tries another branch to
execute goal t
 Again� t fails� and the backtrack set f�� �g is returned to node
�� where it is unioned with f�� �g
 At this point� node � has no more paths
to try� so � is deleted from the collected set
 Note that before this backtrack
set f�� �g can be sent up the tree� the source of node ��s leftmost goal must
be included in it� yielding f�� �� �g
 This is because it is goal t which failed�
and when we go back to node � we remove t from execution
 If � were not in
the backtrack set returned to node �� node � would not try another branch
and a solution could be missed
 In our example� re�execution of goal s at
node �� returns the backtrack set f�� �g to node �
 Since node ��s leftmost
goal� s� was in execution from the root of the search tree� there is nothing to
add to this backtrack set� and node � receives the set f�� �g
 At this point�
node � knows that it is useless to try another branch� and it immediately
fails� passing the backtrack set f�� �g up to node �


� The Constraint Satisfaction Algorithm

The implementation of a CLP��� interpreter can be divided into two mod�
ules� an inference engine� which performs resolution� and a solver� which
checks the satis�ability of linear constraints in the real number domain

To describe this algorithm� we use R and M to denote the tableau of
constraints
� R represents the constraints as they �rst appeared to the

�For convenience� we speak interchangeably of the tableau as an ordered list of rows�

a set of rows� or a matrix� Mi denotes the ith row in the tableau� while Mi�j denotes the

coe�cient of the jth variable in the ith row�



solver� in their canonical input form
 Before being given to the solver� in�
equalities are transformed to equations with slack variables� where each slack
variable is constrained to take on only non�negative values
 M is the �work�
ing copy� of the tableau� upon which Gaussian elimination and the simplex
method are performed in order to maintain M in a solved form

We call our constraint satisfaction algorithm checksat
 Beginning with

a tableau M of m � � constraints which� taken together� are known to be
satis�able� checksat is given a new constraint to process� identical copies
being placed in rows Rm and Mm
 Each row Mi in the satis�able tableau
has a variable that is implicitly being �solved for� in the row
 We call this
variable the basic variable in the row
 If the basic variable is a program
variable �unconstrained�� then it is the �rst variable in the row
� If the basic
variable is a slack variable� then it does not appear in any other row which
has only slack variables �all�slack rows�
 The constant in each row in the
tableau is maintained as non�negative

The tableau is maintained in this solved form in the following manner


First� basic unconstrained variables are substituted out of Mm until the
�rst non�basic unconstrained variable is encountered� if one exists
 Then
there are four cases to consider
 ��� If the equation has reduced to � � ��
it is redundant and Mm and Rm are discarded
 ��� Else� if it reduces to
a � b where a and b are constants and a �� b� it is in con�ict with the
rest of the tableau
 ��� Else� if a non�basic unconstrained variable has been
encountered� it is made basic
 ��� Else� if only slack variables remain� basic
slack variables are substituted out of Mm� the all�slack rows are isolated�
and we perform the �rst phase of the two�phase simplex method on them
to determine if a slack variable can be made basic
 We know that a slack
variable cannot be made basic if we reach a state where the coe�cients for
all the slack variables in the new row are non�positive while the constant is
positive
 In this case� the tableau is unsatis�able
 We give the full algorithm
and a proof of correctness in ���

This algorithm has certain advantages over other algorithms proposed

for CLP���
 First� the operations of Gaussian elimination and the simplex
method are cleanly separated� making the algorithm simple to describe� im�
plement� and prove correct
 The clean dichotomy also increases the algo�
rithm�s e�ciency in that only the all�slack rows are involved in the sim�
plex procedure
 Furthermore� only the forward elimination part of Gaussian
elimination is used to uncover linear dependencies in the tableau� back sub�
stitution being delayed until the end of a successful solution path
 Forward
elimination is often su�cient for the satis�ability check� and we are saved
the expense of back substitution �which serves only to make the solution
more explicit� on failure paths
 Most importantly for our purposes here� we
can show that this algorithm naturally generates minimal con�ict sets


�For e�ciency reasons� variables are ordered according to their time of creation� newer

variables placed before older ones� and program variables before slack variables� To avoid

confusion� we do not show the newer�to�older ordering in the examples below�



� Collecting Con�ict Sets

To identify a con�ict set when checksat uncovers a con�ict� we keep a record
of row operations
 This process can easily be described with a matrix repre�
sentation
 Without loss of generality� we can assume that the solver is given
m constraints to process� and it processes them one at a time� �nding a con�
�ict when it gets to the mth one
 R is an m� n� � matrix representing the
original forms of the rows in the tableau
 M is a dynamic m�n� � matrix
representing the rows as they change state during checksat
 We will use an
m � m matrix B to record the row operations which transform R to M 

Initially� B is the identity matrix
 Each time we add a multiple of one row
to another during Gaussian elimination or simplex� as in Mj � c �Mi �Mj

we also perform Bj � c �Bi �Bj 
 By this means� we maintain the relation
M � B � R
 In particular� say that the last row of B is �Bm��� ���� Bm�m�

Then we have the relation

Mm � Bm�� �R� � ����Bm�m �Rm ���

�where Bm�m is either � or ���
 When a con�ict is uncovered in Mm� we
claim the set of rows C � fRi j Bm�i �� �g constitutes a con�ict set
�

Figure � illustrates how the source of con�ict can be identi�ed by our
method
 Note that the ith program variable to be encountered during pro�
gram execution �not including variables eliminated when redundancies or
con�icts are uncovered� is renamed Xi at the time of creation
 Note also

�Implicitly� the con�ict set C also contains the inequality si � � for every slack variable

si in the rows in C�



that uni�cations are entered as equations into the tableau
 When the con�
�ict is uncovered here� B� identi�es M� as a linear combination of rows R��
R�� R�� R�� R	� R�� R�� and R�
 The sources of these rows are nodes �� ��
and �� indicating that node � had nothing to do with the con�ict
 Thus� we
can backtrack directly from node � to node �


� Minimal Con�ict Sets

We now show that the con�ict set C identi�able through B is minimal� that
is� no proper subset of C is also a con�ict set
 In the following� we will treat
an equation� say q�x� � � � �� qnxn � b� as a row vector �q�� � � � � qn� b�� and
also as an algebraic expression b� �q�x�� � � �� qnxn�
 The following lemma
summarizes the end result in the tableau when a con�ict is uncovered


Lemma ��� Suppose that during checksat� the current tableau

Q � fM�� � � � �Mm��g is in solved form and is consistent� but the new row in

its original form� denoted Rm� is found to be inconsistent with Q when Rm

is transformed to its current form Mm� Then� writing Mm as an expression�

Mm �Mm��x�� � � ��Mm�nxn�b� the following holds� If the inconsistency is
found during the forward elimination step� then allMm�i � �� � � i � n� and

b � �� otherwise� if the inconsistency is found during simplex� then b � ��
Mm�i � � for all � � i � n� and for all Mm�i � �� the corresponding variable

xi must be a slack variable�

As a result of Lemma �� when the algorithm checksat uncovers a con�ict
in row Mm in either case� we have

Mm �
X

si�D

cisi � b ���

where ci � �� D is either empty or contains slack variables only� and b � �

We illustrate equations ��� and ��� using an example in which a con�ict

is found during simplex
 Consider the following tableau


R� � X� � � R	 � X	 � �
R� � X� � � R� � X� �X� �X� � �
R� � X� � � R� � X� �X� � �
R� � X� � � R� � X� �X	 � �

The �ve inequalities are converted to equations with slack variables
 This
tableau shows the resulting equations� with basic variables identi�ed by �


X� X� X� X� X	 S� S� S� S� S	 b

R� �� � � � � �� � � � � �
R� � �� � � � � �� � � � �
R� � � �� � � � � � � � �
R� � � � �� � � � � � � �
R	 � � � � �� � � � � � �



To process R�� we substitute out basic variables X�� X�� and X�� The
resulting all�slack row is kept in a separate tableau
 Simplex chooses S� as
a basic variable in it
 Similarly� when R� is processed� the basic variables
X� and X� are substituted out� resulting in an all�slack row �S��S� � ��

Then� negating both sides yields the row S� � S� � �
 The following shows
the tableau of all�slack rows with the basic variable identi�ed


S� S� S� S� S	 b

M �
� � �� �� � � �

M �
� � � � �� � �

At this point� the equations R� through R� are consistent
 To process
R�� we �rst substitute out the basic variables X� and X	� resulting in the
all�slack row M �

� added to the tableau


S� S� S� S� S	 b

M �
� � �� �� � � �

M �
� � � � �� � �

M �
� � � � � �� �

To determine the consistency of the system of R� through R�� we need to
apply simplex to the all�slack rows
 The essence of the simplex procedure is
to treatM �

� as an objective function to be minimized� given the solution space
determined byM �

� andM
�
�
 When the standard pivoting procedure is applied

twice� the tableau yields a minimized objective functionM� � ��S��S��S	


S� S� S� S� S	 b

M� �� � � � � �
M� � � �� � � �

M� � �� � �� �� �

Keeping track of the row operations� we obtain the following algebraic
identity� treating each row �LHS � RHS� as an expression� RHS � LHS


M� � �M �
� �M �

� �M
�
�

� ���R� �R� �R� � R��� �R� � R� � R�� � ��R� � R	 � R��
� R� �R� � R	 � R� �R� �R�

� � � S� � S� � S	
As noted in ���� Mm is a linear combination of rows in their original

form
 Combining ��� and ��� yields

Mm �
X

Ri�C

Bm�iRi �
X

si�D

cisi � b ���

Since any solution satisfying the equations Ri 	 C� when substituted
into ���� would yield

� �
X

si�D

cisi � b � ��



clearly the set C � fRijBm�i �� �g forms a set of con�icting equations
 It is
obvious that C contains equation Rm� because fR�� � � � � Rm��g is known to
be satis�able
 To prove that the set is a minimal con�ict set� we �rst note
that since ��� is an algebraic identity� those slack variables si appearing on
the righthand side must also appear on the lefthand side
 Since a unique slack
variable is introduced from its �source� inequality� the slack variables on the
righthand side of ��� identify exactly those inequalities whose corresponding
equations appear on the lefthand side of ���
 We now prove that C forms a
minimal con�ict set


Theorem ��� Given a satis�able tableau of m�� rows� if algorithm check�
sat uncovers a con�ict when it processes a new row Rm� then

C � fRijBm�i �� �g constitutes a minimal con�ict set�

Proof� Suppose that C is not minimal
 That is� there exists a set C� which
is a proper subset of C� where C� is also a con�ict set
 The set C� must
contain Rm because the previous m � � rows R�� � � � � Rm�� are satis�able

Applying the algorithm checksat to C� will lead to a relation similar to ����
according to Lemma ��

X

Ri�C�

B�
m�iRi �

X

si�D�

c�isi � b� ���

Without loss of generality� we assume that in both ��� and ���� the coef�
�cient for Rm on the lefthand side is �
 Combining ��� and ��� yields

Rm � �
X

Ri�C�fRmg

Bm�iRi �
X

si�D

cisi � b

� �
X

Ri�C��fRmg

B�
m�iRi �

X

si�D�

c�isi � b
� ���

The tableau fM�� � � � �Mm��g is in solved form when a con�ict with Mm

is uncovered� thus� the basic variables in fM�� � � � �Mm��g can be solved in
terms of the non�basic variables
 Substituting these solutions for the basic
variables into ���� using the fact that R � B��M � all the expressions Ri�
� � i � m��� would vanish
 Thus� after substitution� equation ��� becomes

Rm
� �
X

si�D

cisi � b

where Rm
� � �Rm after substitutions�


Note that the expression
X

si�D

cisi � b



in ��� is not a�ected by the substitutions because the variables in D are
non�basic
 Similarly� the same set of substitutions into ��� yields

Rm
� �
X

si�D�

c�isi � b
�

because these same substitutions erase all Ri�s� � � i � m � �
 Therefore�
we have

X

si�D

cisi � b �
X

si�D�

c�isi � b� �
�

Since �
� is an algebraic identity� the two sides must be identical expres�
sions
 Thus D � D�� ci � c�i� for each si 	 D� and b � b�

Substituting �
� into ��� yields

X

Ri�C�fRmg

Bm�iRi �
X

Ri�C��fRmg

B�
m�iRi

which results in a non�trivial dependency among the rowsRi 	 C� because we
assumed C� is a proper subset of C
 This dependency relation contradicts the
fact that there are no redundant rows in C� because there are no redundant
rows in the tableau fM�� � � � �Mmg
 This contradiction proves the theorem


	 A Two�Sorted Domain

Some implicit assumptions were made in Figure � in order to simplify the
initial discussion of our backtracking method
 First� we assume that variable
bindings are entered as equations in the tableau
 If binding information is
not integrated into the collection of con�ict sets� solutions may be missed

In our example� U �V � � from clause p is in con�ict with U ��V � � from
clause r� but only in the context of the bindings equating the original U and
V � which occurred when goal q was executed
 The presence of equations R	

and R� in the con�ict set ensures that node � is in the backtrack set� as it
should be
 A second simplifying assumption is that all variables are type real�
so there is no need to check for type clashes� nor to account for the recursive
uni�cation of arguments to structured terms
 In this section� we abandon
this second assumption and deal with the two�sorted domain� temporarily
retaining the method of recording variable bindings as equations

To handle variables of two types in CLP���� we de�ne an abstract su�

pertype term� of which types structured term and real number are subtypes

Equality between terms is de�ned as follows�
If t is a structured term and c is a real number� then t �� c
 �An attempt

to unify terms of di�erent types is called a type clash
�
If t and u are structured terms and t � u� then their function symbols

are identical� t and u both have n arguments �n � �� and for � � i � n�
vi � wi� where vi is the ith argument of t� and wi is the ith argument of u




Equality over real numbers is de�ned in the usual manner

Since bindings are handed to the solver as equations� we now have equa�

tions over terms in the tableau
 Each uni�cation equation vi � wi created
between the ith pair of arguments to two uni�ed structured terms is called a
recursive uni�cation equation
 Equations and inequalities found in the body
of a clause are referred to as clause equations

We propose algorithm enterclause to generalize the work of the solver to

a two�sorted domain
 This algorithm initially processes all uni�cations and
clause equations as equations over terms
 enterclause uses a generalized pro�
cess of forward elimination� making our method for collecting con�ict sets
directly applicable
 Forward elimination is now divided into three stages

The �rst stage� applicable to uni�cation equations� dereferences variables
by following binding chains
 The second and third stages are applied to
equations with real number expressions on both sides after dereferencing�
or clause equations which are input in this form
 In the second stage� all
variables are identi�ed as type real
 The third stage continues forward elim�
ination in the domain of reals using checksat� applying simplex if necessary

In all three stages� we maintain R� M � and B as before
 It should be

clear that in the simple case� where no recursive uni�cation equations are
involved� our method of collecting backtrack sets generalizes directly to the
two�sorted domain
 Consider the case where a type clash is uncovered during
dereferencing
 As long as we are processing equations over terms� we can
view each structured term or real number expression simply as a constant

Say that X� is bound to �� X� is bound to g�X�� and then we attempt to
bind X� to X�
 This situation is represented by the following tableau�

R M B

X� � � X�
� � � R�

X� � g�X�� X�
� � g�X�� R�

X� � X� g�X�� � � R� �R� � R�

By our usual method of recording row operations� the con�ict set is
identi�ed as fR�� R�� R�g
 In the case where an equation consists entirely of
real number expressions� extending our method for recording row operations
from the dereferencing step to the checksat algorithm is also straightforward

We now must account for the presence of recursive uni�cation equations

in the tableau
 Since a recursive uni�cation equation can be introduced as a
result of binding chains� we are interested in the history of such an equation�
identifying nodes where bindings which eventually entailed the equation can
be undone
 Consider the example in Figure �� where f�X�� � f�X�� is the
result of forward elimination on R��
 Since f�X�� � f�X�� results from the
linear combination of R��� R�
� R�� R	� and R�� these rows make up the
history of the recursive uni�cation equation X� � X�

More generally� the history of the mth row� HIST �Rm�� tells us the

constraints which brought Rm into existence
 Say that Rm is a recursive



uni�cation equation which arose when two structured terms were uni�ed in
Mi
 Let BROWS�i� denote fRkjBi�k �� �g
 Then HIST �Rm� is de�ned as

HIST �Rm� �
�

Rj�BROWS�i�

HIST �Rj��

If Rm is a non�recursive uni�cation equation or a clause equation� then
HIST �Rm� � fRmg
 If a new row Rm is found to be inconsistent with the
previous m� � rows� then we identify a con�ict set containing Rm as

CONFL�Rm� �
�

Rj�BROWS�m�

HIST �Rj��

If Rm is not in con�ict with the rest of the tableau� CONFL�Rm� � fg

It should be noted that CONFL�Rm� is not necessarily minimal
 �See

��� for an example
� However� it su�ces to identify any con�ict set to apply
the DIB algorithm without missing a solution� and a signi�cant degree of
intelligent backtracking can be achieved without minimality



 A Generator�Consumer Approach

We have shown how our method for collecting con�ict sets can be extended
to account for structured terms
 This method is based upon the recording of
uni�cations as equations in the tableau� an admittedly ine�cient strategy

We now o�er a more e�cient approach arising from the following observation

Let the ancestor path of a goal literal p be de�ned as an ordered set of

node numbers fn
� n�� � � � � nmg where n
 is the number of the node where p
is the leftmost goal� and for � � i �m� ni is the node number of the source
of the leftmost literal at node ni��
 If the source of the leftmost literal at
node ni is �� then m � i��
 The source of a variable which is created when
goal p is executed is the node where goal p is leftmost
 The ancestor path of

a variable is the ancestor path of the goal literal being executed when the
variable is created
 Consider the example in Figure �
 Here� the source of X	

is node � and its ancestor path is f�� �� �g
 Equations X��X� � � and X	�
X� � 
 are in con�ict� but only in the context of the bindings which occurred
at nodes � and �
 By our previous method� the equations representing the



bindings would be part of the con�ict set
 However� putting the source of
these equations in the backtrack set introduces redundant information
 If we
fail on all paths from node �� the DIB algorithm requires that we place the
source of goal p� node �� in the backtrack set
 If we fail at node �� the source
of the goal q� node �� is placed in the backtrack set
 As failure continues�
we will always backtrack through the ancestor paths of the failing goals�
precisely the nodes associated with the input bindings
 Thus� we need only
record extra �stopping places� along the way so as not to miss a solution

That is� we need to mark a variable binding only if that binding occurs at
some node after the node where the variable was created
 Such a situation
is illustrated by Figure �� where we need to mark the binding of X� to X�

as having occurred at node �


By this reasoning� we can simplify our method for tracing bindings
 Let
us represent variable bindings by pointers through the variable space rather
than equations
 Using a dereferencing procedure analogous to our forward
elimination procedure in checksat� we follow the binding chains of the vari�
ables being uni�ed� and if there is at least one unbound variable at the ends
of these chains� we bind the newer variable to the other term

Analogous to our method of recording row operations during Gaussian

elimination� we trace the reasons for each variable Xi�s binding in a generator
set �denoted GEN�Xi��� that is� a set of nodes where alternative paths can
be tried in order to undo the binding
 For any variable Xi� if Xi receives its
binding at the node where it is �rst created� then GEN�Xi� is the empty set

Otherwise� let p be the goal being executed when Xi receives its binding� let
node n be the node where p is leftmost� and let V be the set of variables



whose dereferencing led to the binding of Xi
 In the case where Xi�s binding
is being changed during execution of some node after the node where Xi was
created�

GEN�Xi� � �
�

Xk�V

GEN�Xk�� 
 fng

Thus� we collect generator sets during dereferencing and store the col�
lected set with the variable which is eventually bound� if a binding is made

If dereferencing of a uni�cation leads us to two structured terms requiring
recursive uni�cations� we carry the generator set along with each recursive
uni�cation and continue the dereferencing in the same manner
 If derefer�
encing eventually uncovers a con�ict� the generator set thus collected tells us
nodes not on the ancestor path of the literal being executed� but where we
can try another path of execution with the possibility of �nding a solution

In Figure 
� X� is bound to X� when r is executed 
 Since X��s binding is

being changed� it is marked with the generator set f�g� containing only the
source of r
 When X�
 is uni�ed with � at node 
� we use the binding of X�

to X� in the dereferencing� and the generator set is f�g 
 f
g � f�� 
g
 We
�nd a con�ict when we later attempt to unify X� with �� and the generator
set becomes f�� 
� �g� including the source of the goal just executed


This method takes a generator�consumer approach to intelligent back�
tracking� similar to ���� by identifying nodes which generate bindings for
earlier nodes
 Our method optimizes the generator�consumer approach by
recognizing that bindings generated for a node by its �ancestor� nodes need
not be recorded� since the ancestor nodes will automatically be included in



the backtrack set by the DIB algorithm
 We can integrate this approach
into CLP����s constraint satisfaction algorithm by modifying our de�nition
of the history of a clause equation so that it consists of node numbers rather
than rows
 When an equation is being prepared for the solver� the variables
therein are dereferenced in the manner described above
 Let V be the set of
all the variables dereferenced when the equation is prepared for the solver

Then the history for the equation when it enters the tableau consists of

�

Xk�V

GEN�Xk� 
 fng

where n is the node number of the source of the equation
 With this def�
inition for the history of an equation� we can again use B to identify a
backtrack set when a con�ict appears
 If row Rm is found to be inconsistent
with a satis�able tableau of m� � rows� then we identify the backtrack set
associated with the con�ict as

�

Rj�BROWS�m�

HIST �Rj��

� Implementation

We have implemented a CLP��� interpreter in C using checksat
 The tableau
is stored in R and a working copy of the solved form is maintained in M �
with row operations recorded in B and con�ict sets thereby generated
 In a
run of the Figure � program� equations ��� ��� ��� ��� and �� are correctly
identi�ed as constituting a con�ict set at node ��� while equations ��� ���
��� ��� ��� ��� and � constitute the con�ict set at node ��
 We have also
installed the DIB algorithm into the inference engine�s backtracking mecha�
nism and integrated the identi�cation of con�ict sets between the solver and
the inference engine
 Tests runs on the canonical cryptarithmetic problem
show a �� speedup despite the overhead
 We note that the cost of our
intelligent backtracking mechanism is reasonable
 Only matrix B is required
for storing row operations
 If we further optimize the algorithm by employ�
ing the revised simplex method� we get minimal con�ict sets at no added
expense� since in the revised simplex method the tableau is represented by
the operations performed on it rather than by its current state ���
 The trac�
ing of variable bindings requires only ��� a comparison of the node number
of the variable being bound to the current node number� ��� the storing of a
generator set for each variable� and ��� the unioning of generator sets during
dereferencing
 In many cases� the generator sets will be empty
 In the Fig�
ure � example� a small amount of extra bookkeeping results in a signi�cant
bene�t in intelligent backtracking� since each of nodes ��� ��� ��� ��� ���� ���

 and �� is a choice point
 We conclude that our constraint satisfaction algo�
rithm and technique for tracing variable bindings combine to form a feasible
intelligent backtracking algorithm for the two�sorted domain of CLP���




References

��� Bruynooghe� M
� and L
 Pereira
 Deduction revision by intelligent back�
tracking
 In J
 Campbell� ed
 Implementations of Prolog� Ellis Horwood�
����


��� Burg� J
 Parallel execution models and algorithms for constraint logic
programming over a real�number domain
 PhD Dissertation� University
of Central Florida� December ����


��� Burg� J
� S
�D
 Lang� and C
 Hughes
 Finding con�ict sets and back�
track points in CLP���
 Technical Report TR�CS������� Wake Forest
University� Winston�Salem� NC
 Nov
 ����


��� Codognet� C
� P
 Codognet� and G
 Fil�e
 Yet another intelligent back�
tracking method
 Proc� of the Fifth Int� Conf� and Symp� on Logic

Programming� �Seattle� ������ �����
�


��� Codognet� P
 and T
 Sola
 Extending the WAM for intelligent back�
tracking
 Proc of the Eighth Int� Conf� on Logic Programming� �Paris�
France� ������ �������


�
� Cox� P
 Finding backtrack points for intelligent backtracking
 In J

Campbell� ed
 Implementations of Prolog� Ellis Horwood� ����


��� DeBacker� B
 and H
 Beringer
 Intelligent backtracking for CLP lan�
guages� An application to CLP���
 Proc� of the international sympo�

sium on logic programming� �San Diego� Oct
 ������ �������


��� Heintze� et al
 The CLP��� programmer�s manual� Version �
�
 IBM
Thomas J
 Watson Research Center� Sept
 ����


��� Hogger� C
� and A
 Kotzamanidis
 Aspects of failure analysis in a
CLP��� system
 Internal Report� Imperial College� London� June ����


���� Ja�ar� et al
 An abstract machine for CLP���
 Proc� of SIGPLAN 	


conference on programming language description and implementation�

�San Francisco� May ������ �������


���� Ja�ar� et al
 The CLP��� language and system
 ACM transactions on

programming languages and systems ��� � �July ������ �������


���� Kumar� V
� and Y
�J
 Lin
 An intelligent backtracking scheme for Pro�
log
 Proc� of the international symposium on logic programming� �Sept

������ ��
����


���� Luenberger� D
 Linear and Nonlinear Programming
 �nd ed
 Reading�
Mass
� Addison�Wesley



