
Using Constraint Logic Programming to Analyze the Chronology in a

William Faulkner Story

Jennifer Burg

Dept. of Mathematics and Computer Science

Wake Forest University

Winston-Salem, NC 27109

burg@mthcsc.wfu.edu

Sheau-Dong Lang

School of Computer Science

University of Central Florida

Orlando, Florida 32816

lang@cs.ucf.edu

Abstract

Constraint logic programming is a family of programming languages that allow

for declarative problem statements including the expression of constraints in specialized

domains. In CLP(R), for example, a problem is expressed in the logical format of a

Prolog program, augmented with constraints that take the form of equations and

inequalities over the real-number domain. In this paper, we apply CLP(R) to an analysis

of the chronology of "A Rose for Emily" by William Faulkner, where the story is told in

a non-chronological time sequence with incomplete information about relative or

absolute points in time. Our analysis shows that Faulkner gives conflicting time

information in the story. We come to this conclusion by expressing the time information

as a system of constraints in CLP(R), sorting the time points in these constraints, and

using a specialized constraint solver that identifies a "conflict set" when a conflict in the

constraint system is uncovered.

Constraint Logic Programming

Constraint logic programming (CLP) is a family of programming languages based

upon predicate logic augmented with constraint satisfaction in specialized domains. Like

Prolog, the best-known language in the family, each CLP language allows the

programmer to express a problem declaratively rather than procedurally. That is, a

program is a statement of what must be true of all the variables in the problem for the

solution to be attained. This problem statement is augmented with the expression of

constraints in domains such as integers, rational numbers, or Boolean values. In CLP(R),

for example, the problem can include equations and inequalities that express constraints

among the program variables, which can take on any real-number values. In Chip,

ECLiPSe, and CLP(FD), the variables take on values from discrete, finite domains, and

the constraints might be expressed as ranges of integer values or llists of allowable value

assignments for variables [Dincbas et al.; Van Hentenryck].

For each language in the family, a solution is found through a combination of

resolution-based inference and constraint satisfaction. As execution proceeds, a

constraint "solver" continually checks the satisfiability of the system of constraints it has

encountered in the program so far. If the constraints are satisfiable, it is possible to assign

values to all the variables such that all the constraints remain true statements. If the

constraints are unsatisfiable, the program fails, since a solution is impossible.

CLP languages are valued for their natural, declarative expression of problems.

They have been used to solve problems such as circuit design, stock portfolio

management, warehouse location, resource allocation, and a variety of discrete

optimization applications. In this paper, we use CLP(R) to analyze the chronology of a

 2

William Faulkner short story. To our knowledge, this is the first demonstration of the

language's applicability to an analysis of literature.

CLP(R) Applied to Time Elements in a Faulkner Short Story

 As anyone who has attempted to discuss a Faulkner short story with a group of

college freshmen can tell you, Faulkner chronologies can be challenging to new readers.

The difficulty is that his stories are often not told in a straight beginning-to-end time

sequence. "A Rose for Emily," for example, begins with Emily's death and meanders

back and forth through a period of change from the pre-Civil War south to the modern

age. It can be argued that there are thematic reasons for this winding. But for students

who at first simply want to "get" the story, the initial task is to understand what

happened, and when. It was this need to sort things out for our students that motivated us

to consider the usefulness of CLP(R). (We should note that the first author of this paper

taught college English for ten years before becoming a computer scientist.)

Part of the power of CLP(R) lies in its ability to verify that values are possible for

all program variables in the context of existing constraints without requiring that the

variables have specific values assigned to them. This makes it possible to apply CLP(R)

to the sorting problem that is of interest to us. In an ordinary procedural programming

language such as C or Pascal, sorting is done on specific values that have inherent

ordering and can be judged as greater than, equal to, or less than each other in some sense

-- numbers or letters of the alphabet, for example. But what if we wish to sort variables

whose values are unknown at the time of the sort -- points of time about which we have

only partial information regarding their relative positions? With CLP(R), we can express

time-related information in the form of equations and inequalities where points in time

are either constants or variables. For example, the fact that Emily's taxes were remitted

in 1894 is expressed as 1894C ; and the fact that, with the exception of Emily's

manservant, no one had entered her house for at least 10 years prior to her death comes

out as 10 BA . These points in time can then be sorted, perhaps with more than one

ordering possible.

Another advantage of using CLP(R) for this purpose is the ability to uncover

conflicts in constraint systems, and to pinpoint the cause of the conflict. It has been

shown that when standard Gaussian elimination and the simplex method are used to

check the satisfiability of the constraints, a minimal conflict set can be identified directly.

This information can be used as the basis of intelligent backtracking in the solution of

CLP(R) problems [Burg, Lang, and Hughes].

The first implementation of CLP(R) emerged from a research team at Monash

University in Australia, and from there it evolved to a compiled version put out by IBM's

Thomas Watson Research Center [Jaffar et al.]. Neither of these versions of CLP(R) had

the conflict-identification feature described above. We have implemented our own

constraint solver with conflict-identification and intelligent backtracking, and it is this

CLP(R) implementation that we have applied to the "Rose for Emily" chronology

problem.

Initially, our motivation for applying CLP(R) to the Faulkner story came from two

directions: From the English professor's point of view, it provided a tool for sorting out

the events of "A Rose for Emily" so that the story could be more easily explained to

students. From the logic programmer's point of view, it gave us another interesting

 3

application of CLP, where both sorting of non-ground values and identification of

inconsistencies are possible. Our application of CLP(R) to "A Rose for Emily," however,

gave us surprising results. Though we knew that inconsistencies could be uncovered by

the intelligent backtracking solver, we did not expect to find one in Faulkner's non-

chronological story-telling. But indeed a conflict was there.

Further research inspired by our experiments has revealed to us that we were not

the first to wrestle with the chronology of “A Rose for Emily.” A number of time

sequences for the story have been offered in literary publications, the first in 1958. (See

[Moore] for an overview of these.) Scholars have been debating their various

chronologies for more than forty years now.

In what follows, we will describe the clues about time which Faulkner has given

in this story, show how these pieces of information can be expressed as constraints, and

show how the CLP(R) program for sorting the time elements identifies a conflict in the

chronology of the story. We offer here a tool to facilitate the evaluation of consistent

chronologies, or determine the source of conflict if they are inconsistent.

The Chronology of "A Rose For Emily"
 If we were to tell the story of Emily Grierson, but with none of Faulkner's artistry,

it would go something like this: Emily Grierson was born in the early 1840's, the only

daughter of a once-prominent family of the Old South. As a young woman, she appeared

to have many suitors, but for some reason, Emily never married. Maybe she was too

much under the control of her domineering father. Maybe the Griersons held themselves

a little too high above the rest of the town, and none of the suitors were considered good

enough for Emily. Maybe none of the suitors ever actually asked Emily to marry him. In

any case, Emily's father died and left her with almost nothing, and when Emily reached

30 without marrying, the townspeople actually began to pity her a little. Then Homer

Barron, a construction worker, came to town. Before long, Emily was seen everywhere

with Homer. He wasn't the kind of man the townspeople would have expected Emily to

marry -- a common laborer and a Yankee -- and the propriety of her unchaperoned

relationship with him was even questionable. Emily's out-of-town cousins were called in

to save Emily's reputation. While they were in town, Emily went to the druggist and

bought some arsenic, and everyone feared that she may try to kill herself. But then she

bought a man's toilet set with the initials H.B. on each piece, and it looked like a wedding

was in the offing. The wedding never materialized. Homer disappeared and was never

seen again. Emily became reclusive after that. She was sometimes seen through the

window, like the time when some men were sent out to sprinkle lime around her house

because it smelled so bad. For about eight years, Emily gave China painting lessons to

earn some money. Once, a deputation of town aldermen was sent to her house to tell her

that she had to pay taxes. But other than that, no one but her manservant entered her

house. On the day of her funeral, the townspeople finally got to see the inside of her

house again. This is when they found out what happened to Homer Barron. When they

entered Emily's bedroom, there lay Homer's skeleton on the bed.

 Faulkner does not tell this story in chronological order. However, if one pays

close attention to information about time, all the clues are there. At the time of Emily's

death, no one "had seen [the inside of her house] for at least ten years." "In

1894...Colonel Sartoris...remitted her taxes...." A deputation of aldermen from "the next

 4

generation" then called on her to tell her the deal was off. At that time "Colonel Sartoris

had been dead almost ten years." "She had vanquished their fathers thirty years before

about the smell." And so forth.

Table 1 below gives the variables to be used in the time constraints along with

their meanings. Table 2 gives the constraints, with the corresponding information from

which each constraint was inferred. Figure 1 gives the CLP(R) program, consisting of the

constraints followed by a sort predicate.

The Constraint Satisfaction Algorithm and Conflict Sets

 In what follows, we assume the reader has a basic knowledge of Prolog-like

languages, and refer the reader to [Clocksin and Mellish] and [Sterling and Shapiro] for

details.

The execution of a CLP(R) program can be divided into two components:

resolution-based inferencing coupled with unification for the binding of variables, in the

manner first applied to Prolog [Kowalski; Robinson]; and constraint satisfaction in the

real-number domain [Colmerauer; Cohen]. Thus, a CLP(R) interpreter can be divided

into two corresponding components: an inference engine to perform a depth-first search

through the program space; and a constraint solver to check the satisfiability of the

collected constraints at the entrance to each predicate.

 The basic implementation of a constraint solver for CLP(R) is given in [Jaffar et

al.], to which we have added mechanisms for conflict identification and intelligent

backtracking [Burg, Lang, and Hughes]. The task of the solver is to determine if the

constraints collected thus far during execution are satisfiable. That is, given the bindings

performed during unification, is it possible to assign real-number values to the remaining

program variables such that all constraints simultaneously hold true? (We should note

that in both the Jaffar et al. implementation and our own, the constraints are limited to

linear equations and inequalities for efficiency reasons). The constraints arise from one

of two sources -- either from arithmetic expressions (containing variables) that are

equated during unification, or from equations or inequalities in the bodies of program

clauses. Since more constraints are added to the system each time a clause is entered

during program execution, constraint satisfaction is necessarily incremental.

More formally, the solver's problem is as follows: Say that for each inequality

constraint

bxaxa nn  ...11 (or, bxaxa nn  ...11)

the inequality is converted to an equation of the form

bsxaxa nn  ...11 (or, bsxaxa nn  ...11)

where the slack variable s is assumed to have a non-negative value. (This can be easily

generalized to strict inequalities as well, but we will not do so here for simplicity of

notation.) At any moment in execution, we can assume we have a satisfiable system of

the form

BXM  (1)

where





















*10...0

......1......

........10

*......*1

M is an nm matrix (nm )

 5

for m equations and n unknowns,



















nx

x

x ...

1

represents the n unknowns, and



















mb

b

B ...

1

 represent the constants on the righthand side

of the equations, with all 0ib .

 Notice that the unknowns mxx ,...1 , corresponding to the 1’s on the diagonal of the

matrix M in (1), are the basic variables. The system (1) is satisfiable because an obvious

solution is obtained by letting the basic variables ii bx  for mi 1 , and letting the

non-basic variables 0...1  nm xx .

Given such a system, then time a new constraint is encountered during program

execution, the solver's problem is to check the satisfiability of the new system, including

the new constraint.

In [Burg, Lang, and Hughes], we describe an incremental version of Gaussian

elimination combined with the simplex method for checking the satisfiability of the

system of constraints. All operations in this algorithm are basic row operations where a

multiple of one row (i.e., constraint) is added to another as we determine which variable

to "solve for" in each constraint. In effect, we keep substituting variables out of the last

row of our constraint system until we arrive at one of two results: If the system

(including the new constraint) is indeed satisfiable, then either the new constraint is

completely eliminated because it is redundant, or the system is transformed into the same

form as in (1), with one extra row added. If, on the other hand, the system is unsatisfiable

when the new constraint is added to it, then our row operations has put the last row in the

form

 1,111,1 ...   mnnmmmm bxaxa

where 0,1  ima and 01 mb . This last equation clearly cannot be satisfied by the

unknown 0ix for ni 1 , because each coefficient 0,1  ima but the constant

01 mb .

To identify a set of conflicting constraints in the system, we need to keep a record

of the row operations performed during Gaussian elimination and the simplex procedure.

Specifically, if we let matrix R represent the set of equations in their original form, each

time a row operation is applied to an equation in R , the matrix R is transformed into

RE  , where E is a matrix corresponding to the row operation. Therefore, we could use

a matrix B which is equal to the product of these E matrices to record the successive

row operations. As a result, the current coefficient matrix M in the transformed system

(as in (1)) is related to the matrix R by the simple equation

RBM 
It has been proved in [Burg, Lang, and Hughes] that the indices of the non-zero entries in

the last row of matrix B identify exactly the rows (i.e., constraints) in R which cause the

conflict. We have shown that the conflict set revealed by our intelligent backtracking

solver is in fact a minimal conflict set -- that is, if we remove any one constraint from the

 6

set, it is no longer inconsistent. (However, we should note that the conflict set revealed by

the algorithm is not necessarily unique.)

The Conflict in "A Rose for Emily"

 If you attempt to run the program given in Figure 1, you'll find that it never

actually gets to the sort procedure. This is because the constraint solver discovers a

conflict when it reaches the constraint BE  . Our own CLP(R) interpreter lists the

conflicting constraints as follows:

BE

ED

DB







8

Intuitively, it should be clear that these constraint are irreconcilable. Faulkner tells us

that the deputation of aldermen went into Emily's house:

A deputation waited upon her, knocked at the door through which no

visitor had passed since she ceased giving china-painting lessons eight or

ten years earlier. They were admitted by the old Negro into a dim hall

from which a stairway mounted into still more shadow.

This we represent as 8 ED (and 10 ED). Common sense then dictates that the

last time anyone saw the inside of Emily's house (moment B) was at the same time or

after the visit of the aldermen, i.e., DB  . In the same passage we learn that the china-

painting lessons occurred between eight and ten years earlier. Later in the story we are

told that the china-painting students were the last townspeople to enter Emily's house:

Then the newer generation became the backbone and the spirit of the

town, and the painting pupils grew up and fell away and did not send their

children to her with boxes of color and tedious brushes and pictures cut

from the ladies' magazines. The front door closed upon the last one and

remained closed for good.

 This we translate into the constraint BE  .

 One way to reconcile this conflict is to assume that when Faulkner says that “the

front door closed … for good,” he means that only in the context of the China painting

lessons. In any case, some re-interpretation is necessary in order to arrive at a consistent

chronology.

Removing the Conflict and Sorting the Events of the Story

 Since the conflict set uncovered by our CLP(R) interpreter is a minimal conflict

set, we can resolve it by removing any one of the constraints. In this case, we can

remove the constraint E = B, and it is then possible to sort the events of the story.

 The complete CLP(R) program is given in Figure 1. With the constraint

BE  left in, the solver never executes the sort because it finds a conflict in the

constraint set. With the constraint BE  deleted, the solver finds five solutions

(disregarding duplicate solutions that swap the position of time points that can be equal).

The differences among them arise from the overlapping spans of time within which

events might fall. The time line below gives a representative ordering of the variables,

with feasible dates filled in.

 This sorting exercise and an examination of the resulting timeline can be

meaningful to students trying to understand Faulkner's work, for through the sorted

 7

timeline we see more clearly the transitional time period during which the events of the

story take place. In our sample timeline, Emily was born in 1850 and died in 1924, her

life beginning before the Civil War and ending within America’s period of

industrialization and growth. Our interpretation of events places Emily’s birth earlier

than many others would place it. (In fact, our constraints accommodate a birthdate as

early as 1842.)

Faulkner's Treatment of Time

 One might like to have some explanation for the apparent slip in Faulkner's story-

telling. But the question of whether or not Faulkner simply made a mistake is not the

central issue in our understanding of Faulkner’s treatment of time. It is the narrator, not

Faulkner, who is telling us Emily’s story. And like the old men in their brushed

Confederate uniforms lined up for Emily’s funeral, perhaps he is “confusing time with its

mathematical progression, as the old do, to whom all the past is not a diminishing road

but, instead, a huge meadow which no winter ever quite touches….” If we pick events

from this meadow of recollections and then try to put them in a sequence, perhaps it isn’t

surprising after all that they don’t line up perfectly.

Useful Extensions and Applications of this System

 We have shown that CLP(R) is a system useful for the chronological sorting of

events in stories where events are related out-of-order. It is easy to play with numbers,

adding equality constraints to the program to determine if certain dates for certain events

are possible. With this system, it is possible to compare different interpretations of the

story’s chronology, find inconsistencies, and see more clearly the range of dates within

events might fall.

However, this application of CLP(R) does require that the reader transform events

and their relative order into the kinds of constraints shown in Tables 1 and 2 – perhaps

not a bad thing, since it values the human input to the interpretive process. To automate

this part of the process would be a challenging problem of artificial intelligence.

(Imagine, for example, an intelligent program that could interpret even a straightforward

sentence like this one: “The whole town went to her funeral…to see the inside of her

house, which no one save an old manservant…had seen in at least ten years.”)

 Extensions of this system that are feasible, however, would include providing a

user interface through which the reader could, graphically, (1) define points in time, (2)

indicate which points are before which others, (3) give dates where dates are known, (4)

ask for a sort, 5) see a graphical presentation when the sort is possible, or (6) receive a list

of conflicting constraints when a sort is not possible. A reasonable level of automated

intelligence might also be realized by building in certain events with related common

sense knowledge. Common sense constraints are so “taken for granted” by readers that

they might often be omitted in the human’s enumeration of time constraints, resulting in

nonsensical sorts. For example, Homer Barron’s disappearance must have happened

after he came to town (J > I). Even more obviously, a person must be born before he or

she dies – in fact, all events of a person’s life must precede death. Built in “birth” and

“death” time points could be automatically accompanied with these common sense

constraints.

 8

 Our current research involves the building of such a user interface, along with

testing the system on more complex works of fiction. We have shown the usefulness of

constraint logic programming on short works, to help in explaining non-chronological

story-telling and to compare different interpretations of the chronology. On longer, more

complex works, applying constraint programming techniques would be a more time-

consuming project, but one with great potential value for pedagogy and literary research.

 9

Variable Meaning

A Emily's death

B Last time anyone but Emily's manservant saw the inside of her house

C Colonel Sartoris remitted Emily's taxes

D A deputation called on Emily asking her to start paying taxes again

E Emily stopped giving China painting lessons

F Colonel Sartoris died

G There was a bad odor around Emily's house

H Emily's father died

I Homer Barron came to town

J Homer disappeared

K Emily was born

L Emily appeared in town again after Homer's disappearance

M to N First period of time when Emily shut her doors to the public

N to E Period of China painting lessons

E to A Second period of seclusion

Table 1 Variables and Their Meaning

 10

Constraint Meaning

A-B>=10 No one besides the manservant had seen the inside of Emily's house for at

least 10 years before her death.

C=1894 Colonel Sartoris remitted Emily's taxes in 1894.

DC>=10

DC<=20

A generation later, a deputation called on Emily to tell her that she would

have to pay taxes after all.

DE>=8

DE<=10

Eight or ten years passed between the time when Emily last gave China

painting lessons and the time the deputation called on her.

F>C Colonel Sartoris died after he remitted Emily's taxes.

DF>9

DF<10

Colonel Sartoris died almost 10 years before the deputation called on

Emily.

DG=30 There was a bad odor around Emily's house 30 years before the deputation

called on her about her taxes.

B>=D,

The last time anyone but the manservant saw the inside of Emily's house

had to be after or at the same time as the visit of the deputation

B>=E The last time anyone but the manservant saw the inside of Emily's house

had to be after or at the same time as the last China painting lesson

GH=2 The odor around Emily's house appeared two years after her father's death.

I>H Homer Barron came to town after Emily's father died.

IK > 30 Emily was older than 30 when Homer Barron came to town

J>I Homer disappeared after he came to town.

GJ<0.5

G>J

The odor appeared less than 6 months after Homer disappeared.

LJ < 0.5 Emily appeared again on the streets after Homer's disappearance.

AK=74 Emily died at the age of 74.

M>L The first period when Emily shut her doors to the public happened after

her reappearance after Homer's death.

EN>=6

EN<=7

Emily gave China painting lessons for 6 or 7 years.

E=B When Emily shut the door on her last China painting student, no one but

her manservant saw the inside of her house after that.

NK<=45

NK>=38

Emily was about 40 when she gave China painting lessons.

C>=N

C<=E

Colonnel Sartoris remitted Emily's taxes while the China painting lessons

were going on.

M<N The beginning of the period of seclusion has to be before the end.

A>E, A>K,

Etc.

Emily died after everything else.

Table 2 Constraints and Their Meaning

 11

emily([A,B,C,D,E,F,G,H,I,J,K,L,M,N], LIST):-

 A-B >= 10,

 C = 1894,

 D-C>=10, D-C<=20,

 D-E>=8, D-E<=10,

 F>C,

 D-F>9, D-F<10,

 D-G=30,

 B >= D, B >= E,

 G-H=2,

 I>H,

 I-K>30,

 J>I,

 G-J<0.5,

 G>J,

 L-J=0.5,

 A-K=74,

 M>L,

 E-N>=6, E-N<=7,

 %E = B, /*This constraint inserts a conflict*/

 N-K<=45,

 N-K>=38,

 C>=N, C<=E,

 M<N,

 A>E, A>K,

 insort([A,B,C,D,E,F,G,H,I,J,K,L,M,N], LIST).

insort([],[]).

insort([X|L],M):-

 insort(L,N), insortx(X,N,M).

insortx(X, [A|L], [A|M]):-

 A<=X, insortx(X, L, M).

insortx(X,L,[X|L]):-

 X<=A, starts(A,L).

insortx(X,[],[X]).

starts(A, [A|L]).

Figure 1. The CLP(R) Program

 12

K (1850) Emily is born

H (1879) Emily’s father dies

I Homer Barron comes to town

J Homer disappears

G (1881) A bad odor appears around Emily’s house

L Emily reappears after a period of seclusion

M Emily begins a second period of seclusion

N (1894) Emily ends second period of seclusion; begins giving China painting lessons

C (1894) Emily’s taxes are remitted

E (1901) Colonel Sartoris dies

F Emily stops giving China painting lessons

D (1911) A deputation of town officials call on Emily about her taxes

B (1914) Last time anyone but Emily’s servant sees the inside of her house

A (1924) Emily dies at the age of 74

Figure 2. The Timeline for “A Rose for Emily”

 13

References

Burg, J., S.-D. Lang, and C. E. Hughes. Intelligent Backtracking in CLP(R). Annals of

Mathematics and Artificial Intelligence 17 (1996), 189-211.

Clocksin, W.F., and C. S. Mellish. Programming in Prolog. 3rd ed. New York:

Springer-Verlag, 1987.

Cohen, J. Constraint Logic Programming Languages. Communications of the ACM 33, 7

(1990), 52-68.

Colmerauer, A. An Introduction to Prolog III. Communications of the ACM 33, 7

(1990), 69-90.

Dincbas et al. The Constraint Programming Language CHIP. International Conference

on First Generation Computing Systems, Tokyo, Japan, November 1988.

Faulkner, W. Collected Stories of William Faulkner. New York: Random, 1950.

Going, William T. Chronology in Teaching “A Rose for Emily.” Reprinted in Inge, 76-

83.

Inge, M. Thomas. William Faulkner: A Rose for Emily. The Charles Merrill Literary

Casebook Series. Columbus, Ohio: Merrill, 1970.

Jaffar, et al. The CLP(R) Language and System. ACM Transations on Programming

Languages and Systems 14, 3 (July 1992), 339-395.

Kowalski, R. Algorithm = Logic + Control. Communications of the ACM 22, 7 (1979),

424-436.

McGlynn, P. D. The Chronology of “A Rose for Emily.” Reprinted in Inge, 90-92.

Moore, G. M. Of Time and its Mathematical Progression: Problems of Chronology in

Faulkner’s “A Rose for Emily.” Studies in Short Fiction 29 (1992), 195-204.

Nebeker, H. E. Chronology Revised. Studies in Short Fiction 8 (1971), 471-473.

Perry, M. Literary Dynamics: How the Order of a Text Creates its Meanings [With

Analysis of Faulkner’s “A Rose for Emily”]. Poetics Today 1, 1-2 (Autumn 1979),

35-64, 311-361.

Robinson, J. A. Logic and Logic Programming. Communications of the ACM 35,

3(1992), 40-64.

 14

Sterling, L. and E. Shapiro. The Art of Prolog: Advanced Programming Techniques.

2nd ed. Cambridge: MIT Press, 1994.

Van Hentenryck, P. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

Wilson, G. R., Jr. The Chronology of Faulkner’s “A Rose for Emily” Again. Notes on

Mississippi Writers 5 (Fall 1972), 56, 44, 58-62.

Woodward, R. H. The Chronology of “A Rose for Emily.” Reprinted in Inge, 84-86.

