
Linking Computer Science, Art, and Practice
Through Digital Sound

Jennifer Burg
Wake Forest University

Winston-Salem, NC 27106
burg@wfu.edu

Jason Romney
University of North Carolina School of the Arts

Winston-Salem, NC
romneyj@uncsa.edu

ABSTRACT
This paper reports on an NSF-grant supported summer workshop
that brought music and computer science students together for
eight weeks to explore creative projects in digital sound
production. The dynamics of the students’ collaborations were
observed as they crafted experimental projects weaving together
music, theatre production, sampled digital audio, and MIDI.
Moving among various levels of abstraction, the students found
practical and artistic motivations to learn the science of digital
sound. The projects they produced suggest ways to revitalize
computer science courses by linking science, art, and practice
through digital sound, a subject naturally interesting to students.

Categories and Subject Descriptors
J.5. [Computer Applications]: Arts and Humanities

General Terms
Experimentation

Keywords
digital audio, MIDI, curriculum development, interdisciplinarity,
collaboration

1. INTRODUCTION
As we computer scientists look for ways to draw students back
into our programs, we sometimes miss the most obvious hooks.
How many students do we see walking across campus with buds
sprouting from their ears and music players on their belts? Have
we forgotten the language that spoke to us most stirringly when
we were 18 and 19 years old, the language of music? Sound
captures the attention of young students. Digital sound and music
are all around us, part of our everyday lives. Digital sound is
founded on concepts central to computer science. So why is it
that nowhere within the computer science curriculum can we find
a place for digital sound? No ACM category used in the
classification of SIGCSE papers relates to the study of digital
sound. Courses in digital audio are rare in the computer science
curriculum. Yet there is a great deal of computer science that can
be learned by means of sound digitization and processing.

Interdisciplinarity has come into favor in academia. The current
trend is to break the barriers between departments and to explore
conceptual relationships and synergies between disciplines.
Incorporating digital sound into the computer science curriculum
fits within this collaborative spirit. Digital sound production is
part of music, theatre, television, radio, and video production. It
has its technical and mathematical roots in digital signal
processing, traditionally within the realm of engineering. Thus it
brings together science, art, and practice – a combination that
satisfies the students’ need to relate their learning to something
“real” that matters to them.
Our work focuses on finding ways to make science, art, and
practice meet in the computer science curriculum via topics in
digital sound. One of us is a computer science professor, the
other a digital sound designer who teaches at a performing arts
conservatory. Our NSF grant involves mixing music/theatre
students with computer science students to see how their
interactions naturally evolve. How does the perspective of one
type of student affect the work of the other? Where are the
synergies? What types of projects emerge, and how can the
concepts learned in these projects be mapped to topics in
traditional computer science teaching? How much of the science
of digital sound must students know in order to improve their art
and practice? What elements of the science leap out to students
and demand to be understood as they try to create the work that
inspires them? These were the questions we posed at the outset of
an eight-week digital sound production workshop held at Wake
Forest University in the summer of 2008.
For eight weeks – five days a week, eight hours a day – three
computer science and three music students worked together in our
digital sound lab. Some worked on Windows computers; others
worked on Macs. Sampled digital audio and MIDI were
combined using software like Audition, Audacity, Reason,
Cakewalk Music Creator, Logic Pro, Pro Tools, and Max/MSP.
The students were charged with finding collaborative partners and
doing experimental projects that combined music or theatre
production with digital audio seen from a computer science
perspective. They also were permitted to work on personal
projects of their own interest. The students’ music, writeups, and
videos of their talks at a workshop can be accessed at
http:/www.cs.wfu.edu/~burg/CCLI/DigitalSoundProductionWork
shopSummer08/DigitalSoundWorkshopProceedings.html.
In this paper, we describe the students’ outcomes from the
workshop, our observations of the their work, and the conclusions
we draw from these. Because the workshop was set up quite
differently from a standard course – in that the students had
freedom to choose their own projects and partners and had a great
deal of time to focus on these projects – the setup of the workshop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00.

http://www.cs.wfu.edu/~burg/CCLI/DigitalSoundProductionWorkshopSummer08/DigitalSoundWorkshopProceedings.html�
http://www.cs.wfu.edu/~burg/CCLI/DigitalSoundProductionWorkshopSummer08/DigitalSoundWorkshopProceedings.html�

is not directly transferrable to the computer science classroom.
However, the types of projects completed in the workshop suggest
assignments and topics related to digital sound that could be
woven into existing computer science courses. Thus, this paper
may be of interest to anyone looking for ways to invigorate their
courses or introduce new courses that attract students while
retaining the rigor and relevance of computer science.
Very little background literature exists on this subject, for the
very reason that digital sound is not often taught as computer
science. We are aware of another recent project that combine the
science and music of sound has come out of Duke University, a
collaboration of their Engineering Visualization Technology
Group and Music Department. Their results are viewable online.
However, resources on pedagogy in this area are scanty.

2. INTERDISCIPLINARY
COLLABORATIVE PROJECTS
2.1 The Assignment
We wanted the students to do more than record and edit songs in
the sound production lab. We urged them to try to be
experimental and strike out into areas that would require that they
learn something new about music or computer science. At least
one project had to be collaborative with a person from the
opposite discipline. Within the first week the students had chosen
projects and partners. They divided into two collaborative groups
– one with two computer science students and one music student,
and the other with the reverse combination.

2.2 The Music of Nature
The first collaborative project to emerge was “Nature Fusion.”
One of the music students was interested in recording and
cataloguing sounds of nature ranging from wind and birds to
human coughing and breathing. She began recording,
downloading, and cataloguing these sounds. As the ideas became
more focused, the music student began to work with a CD of bird
calls. She listened to each one, found its pitch zone, and mapped
it to a zone in a MIDI sample bank. The sample bank could then
be used as an instrument for an original composition created by
the other music student in the group.
In the meantime, the computer science student in the
collaboration set about creating an experimental environment in
Max/MSP where note sequences and chords within any given key
could be randomly generated. The program could use whatever
sample banks were created by the music student. The idea was to
generate novel chords and sequences as a way to inspire elements
in the music composition that might not immediately come to
mind through the composer’s usual creative process.
When the sample bank had been completed by the first music
student, it was tested on a jazz song. A MIDI version of this
song was found online, imported into Cakewalk Music Creator
rewired to Reason, and played using the bird call sample bank –
an amusing and not unpleasing rendition.
The sample bank was finally used in an original composition by
the second music student, a techno-rock piece the students called
“Jungle Banga,” which we all considered an excellent
composition that captured the spirit of the project.

Figure 1. Turning Bird Sounds into Patches in Music Creator

2.3 Screamin’ Demon Music Creator
The second collaborative project to emerge was the Screamin’
Demon Music Creator. In this interactive computer environment
envisioned by the students, players could stand in front of a
camera, view themselves on the computer screen, and point to
icons of instruments that were arrayed around their heads (shown
on the computer screen) to select what they wanted to play.
When their gestures caused their videoed hands to move across an
instrument icon on the screen, loops of that instrument would start
to play.
To implement this music playground, the students chose to use
Max/MSP and Jitter, a visual programming environment for
MIDI, digital audio, and digital video. The two computer science
students did the programming while the music student produced
music loops for various instruments. Through Jitter, successive
video frames could be captured and checked for activity in the
vicinity of the icons on the screen. Max allowed the music loops
to be played continuously, with the volumes of only the chosen
instruments set above 0. Since loops are automatically
synchronized, the instruments were synchronized as they were
turned on and off. After they had the basic program running, the
students added more features. They rewired Max to Reason, a
MIDI sampler and synthesizer package that provides a wide range
of both realistic instruments and creatively manipulable sounds.
They also added buttons for changing tempo or key.
The students began this project on the first week with great
enthusiasm and, impressively, had the foundation of it
implemented by the end of the first week. The system could

respond to gestures and start loops running. By the end of the
second week, the program had grown to be rather unmanageable,
its patched-together objects filling up a full 20 inch Mac monitor.
(Patching objects together is how you program in Max/MSP.) By
the end of the third week, with Max rewired to Reason and the
extra features added in, the program began to bog down and not
react fast or predictably enough to be fun to play with. The
students believed they could optimize and refine the program if
they spent more time, but they were really ready to go on to the
next thing for the second half of the workshop.

Figure 2. Rewiring to Reason

We realized in retrospect that a weakness in the project was a lack
of integration of the music and computer science elements. The
two elements didn’t seem to feed each other. The music student
worked separately creating music loops, and then handed these
over to the computer science students. The computer science
students paid little attention to the musicality of their production,
and in the end their “game” lacked that attraction for the players.
There was nothing particularly engaging about the music that was
produced. It was simply turned on and off. This is not to say that
the project was a failure. The students were inspired to learned a
great deal about Max/MSP, Jitter, digital audio, MIDI, and loops
in a very short period of time. However, it seemed that the work
reached a point of diminishing returns, and we agreed that the
students should strike out in new avenues that interested them.

2.4 Creating Echoes for Floyd Collins
A third collaborative project was completed with the help of a
computer science student who was not officially part of the sound
workshop, but who worked part-time along with this group
(supported under a separate part of the NSF grant). While the
other students had considerable creative freedom to choose their
projects, this student was given a problem to solve. This was a
theater sound design problem from the musical Floyd Collins. In
one scene of this musical, the main character is in a cave singing
along with his own echoes, each echo being delayed by one
musical measure. For theatrical authenticity, it’s desirable that

the echoes to be created live, reflecting the singer’s voice exactly
as he is singing for that performance. This requires audio delays,
which can be accomplished either by hardware or software. The
student in the workshop was challenged to try a software solution
using Max/MSP, exploring the extent to which the tempo of the
music could be set by the conductor and altered by small
amounts, as is natural in real-time human-set tempos.
It was interesting to note that this project – though not chosen by
the student and not ostensibly a collaborative project – turned out
to be quite successful in interactions and outcome. We decided to
try the student’s Max/MSP implementation in the theater, with
one student singing the echo song, another playing piano
accompaniment (a music student), and a third working as assistant
sound engineer (a computer science student). (The student who
sang was a computer science student who happens to have a
double major in theater). The Max/MSP implementation worked
even in its first rough cut, and from the experiment in the theater,
we identified additional issues to address. In particular, the
students were able to observe the significance of latency and
delay caused by processing, which is important in synchronizing
the voices of the singer and the echoes.

2.5 Observations on the Interdisciplinary
Synergies
It was clear in the workshop that the presence of students from
one discipline catalyzed the work of students of the other.
Although we sometimes wished for better integration of the
disciplines within the collaborations, we came to recognize that
collaboration takes different forms. Just having the students in the
same room was of value, as some of the collaboration involved
their simply helping each other when they got stuck, overhearing
things that the others were doing that gave them ideas, learning
something serendipitously that fed their work, and getting
inspired by each other’s enthusiasm. The fact that the learning
had meaning and results was the main thing.

We also observed that different types of projects have different
benefits. On the one hand, allowing students to choose their own
projects ensured that they were interested in what they were
doing. The students were willing to spend hours figuring out how
to do something that mattered to their creations. (This was
particularly true of the personal projects described below.) This
approach, however, can also let students fall into the trap of
aiming for more than can realistically be accomplished in the
amount of time they have. Surprisingly, “assigned” projects
worked out quite well. (We had another successful one not
described in this paper.) Assigned projects resemble real-world
ones in that the expectations and time limits are set by the
“employer.” We found that the students rose to the challenge,
particularly because the projects we assigned had clear
applications in the theater production.

A final observation is that the dichotomy between “music” and
“computer science” students is largely a false one. It turned out
the one computer science student had a double major in theater
and could sing and play the keyboard. A second one could play
the guitar and sing and had clear musical sensitivity. (The third
computer science student had no music background and was
delighted to play the role of stereotypical computer geek.) Two
of the three music students were technically adept with their
computers, and the third found his stride easily by the end of the

second week. The main difference in the group was the computer
scientists’ ability to program and understand the mathematics in
more depth, and the music students’ knowledge of music theory
and experience in performance.

3. INDIVIDUAL PROJECTS

3.1 Covers and Original Music Compositions
Two students created “covers” of songs composed by other
musicians. This gave them an opportunity to learn multitrack
recording and editing using digital audio and MIDI. They
recorded their own voices, added MIDI instruments, and edited
and mastered the final songs.
Two of the students – one music student and one computer
science student – did arrangements of songs they composed
themselves. These were done in multitrack editing software using
both digital audio and MIDI tracks. Their songs can be heard at
our website.
Five of the six group members also participated in a live
recording session where a song written by one of the computer
science students was recorded. The composer played keyboard
and sang, a music student played guitar, two students sang
backup, and a computer science student assisted as sound
engineer.

3.2 Sound at a Low Level of Abstraction
One of the students – a computer science major – found himself
gravitating to a lower level of abstraction before too long in the
workshop. He was interested in doing things himself, that is, by
means of his own programs – reading a playing .wav files,
capturing MIDI messages and converting them to digital audio,
and creating his own vocoder and autotuner. This student was a
rising sophomore with only one year of programming experience
and no music background. The programs he produced proved to
be among the most useful outcomes of the workshop.

3.3 Observations on Individual Projects
We’ve found that there are a lot of students interested in learning
how to produce music. For such students, doing “that first song”
seems to be something that have to get out of their system pretty
early on, and it’s an excellent place for them to start since it
motivates them to learn the fundamentals. To pull the computer
science out of digital sound production, however, students need to
go beyond (or perhaps beneath) this first experience to more
experimental work or work at a lower level of abstraction. For
this reason, we were happy to have the more traditional computer
science student in the mix. As he unselfconsciously chattered to
his vocoder (as he was programming) and talked it over with us
while he was debugging it, the music students learned a little of
what was going on underneath the software and could envision
ways of making the software work more to their own
specifications. In the end, even the individual projects became
collaborative in some respects and the students sought help and
inspiration from each other.

4. THE COMPUTER SCIENCE IN SOUND
As a foundation for working with digital sound, students need to
understand the digitization process – sampling and quantization,
along with the implications of sampling rate and bit depth.

Sounds modeled as sine waves and the relationships between
frequency and pitch and between amplitude and volume are also
basic, as are frequency components and dynamic range. For a
complete foundation in digital sound, students need to understand
the difference between sampled digital audio and MIDI, and the
difference between MIDI samplers and synthesizers.
We taught short classes to the students on the topics above at the
outset of the workshop. We also set them up with Cakewalk
Music Creator on the PCs and Logic Pro on the Mac, and showed
them how to rewire their MIDI sequencers to Reason on their
respective platforms. After that, we threw them into the water
and told them to learn how to swim while we sat back and
watched.
We were especially interested in finding the places where the
students wanted and needed to know the science to accomplish
their goals. We can cite a number of interesting examples.
More than one student was baffled at first about the concept of
rewiring a MIDI sequencer (e.g., Logic) to a MIDI
sampler/synthesizer (e.g., Reason). The idea is that the sequencer
sends the MIDI messages to the sampler, the sampler interprets
the messages and turns them into digital audio sounding like some
chosen instrument, and the sound is routed back to the sequencer
possibly for further processing before it goes on to the sound card.
To demystify what at first seemed like an exercise in clicking
here and choosing a menu selection there, the students had to
conceptualize the signal flow, understanding the changing nature
of the data (from MIDI to digital audio) as it moved from one
place to another.
Early in summer, we became aware limitations of some of audio
equipment. In particular, students experienced the frustrations of
playing their MIDI keyboards and hearing the sound some
milliseconds later. To fix this problem, the students had to learn
something about MIDI lag, the implications of buffer sizes, and
the comparative characteristics of sound drivers like ASIO vs.
MME vs. CoreAudio.
Quite a few activities required that the students understand
frequency components: microphone receptivity, speaker
characteristics, equalization of digital audio, musical harmonics,
timbre of instruments, and modulation of the human voices.
Dynamics were equally important, allowing for an adjustment of
the difference between the loudest and softest parts of a song. The
students wanted their personal projects – music productions – to
sound really good, and this wasn’t possible without well-informed
editing. In the end, they were especially enamored of tools that
allowed them to master their music by dividing it into frequency
bands and applying dynamics processing band-by-band – a
process that combined two basic concepts they had learned.
The students became interested in quantization in two contexts –
first in choosing the bit depth for a recording, and then in
choosing the resolution of MIDI notes. They were able to see the
effect of the first type of quantization on the dynamic range of
sampled digital audio. The second type of quantization is the
process of “snapping” notes to certain time units in MIDI,
resulting in a more precise tempo. Applications such as this
clarify a central computer science concept, where data types have
only so much potential precision dependent upon how many
different discrete values are possible within a range. The
resulting rounding error manifests itself in a variety of contexts.

Students came to a more mathematical understanding of the word
“modulation” as they investigated the possibilities of vocoders
and autotuners. It was one of the music students who brought
these devices to the attention of the others, since he had always
wanted to use them. We lectured to the group on the basic design
of a vocoder and encouraged them to take it from there. A music
student investigated the vocoder in Logic Pro while a computer
science student tried to implement his own vocoder and autotuner.
In the process, the computer science student came to understand
harmonic frequencies in the human voice. The lights really came
on when he asked his music partner to sing a middle C into the
microphone. The computer scientist recorded the note, did a
Fourier transform on the sound file, and viewed the frequency
components. Spikes showed up at integer multiples of the
fundamental frequency, but the student was surprised to find that
the fundamental frequency wasn’t the biggest spike. He had
another “ah-ha!” moment when he tried to snap the fundamental
frequency component in his partner’s voice to precisely 262 Hz,
the frequency of middle C, moving all the other frequency
components by the same amount (implementing, he thought, the
activity of an autotuner). The resulting tone was dissonant, the
so-called harmonics no longer in harmony with the fundamental.
This experiment showed, in action, the non-linear nature of
human hearing. (Notes separated by an octave sounds essentially
like the same note to the human ear, but you actually double the
frequency each time you move up an octave – a non-linear
progression.)

5. INTEGRATING DIGITAL SOUND
CONCEPTS INTO THE COMPUTER
SCIENCE CURRICULUM
The most direct mapping of exercises to existing computer
science courses grew out of the projects of the computer science
student who chose to work at a lower level of abstraction. As he
learned about the difference between digital audio and MIDI, the
various formats of audio files, and the behavior of vocoders and
autotuners, he wanted to create these things himself. In doing so,
he had to teach himself quite a few other elements of computer
programming: (1) File i/o, including random access files (2)
Discovering the existence of and linking to specialized libraries
(e.g., for sound) (3) Headers on certain file types (e.g., .wav),
reading, writing, or parsing them (4) Uses of hexadecimal in
programs (5) Directly addresses certain devices in a program, like
/dev/midi or /dev/dsp in order to read or write MIDI and audio
data (6) Complex numbers and the implementation of the Fourier
transform (7) Fairly complex uses of arrays (also used in the
Screamin’ Demon program) (8) Dynamic memory allocation of
arrays (9) Other miscellany like command-line arguments,
storage sizes for primitive data types, etc. The programming
exercises created by these students can be made available to the
reader. These exercises can be fined-turned so that they in the
range of first and second year programming and would be
appropriate in CS1 and CS2 courses.

6. CONCLUSIONS FROM THE SOAP BOX
These examples show how students can be motivated to learn
mathematical and scientific concepts when they work with digital
audio. The reader might argue that these are not necessarily
computer science concepts and they don’t really belong in the
computer science curriculum. But why not? We all know at this

point that we need to rethink how and what we’ve been teaching,
as the world has marched merrily on into the digital age and
pretty much left computer science education behind. Students
want to know how computers and things-digital relate to them and
the world they live in. Anything that is digital and processed by a
computer is fair game for computer science. This is not to say
that we abandon the mathematical and scientific rigor of our
discipline, but instead that we find a core for the discipline that
goes beyond computer programming. The digitization process –
sampling and quantization and all the implications thereof – is a
concept just as fundamental to computer science as loops and
variables. Essential mathematics, algorithms, and technology can
be taught by means of applications that give life and meaning to
concepts. We’re missing good opportunities to interest students
in ways that combine relevance with rigor.

7. FUTURE WORK
In our future work, we will continue to sort out the concepts and
assignments that we’ve extracted from this experience. The
programming assignments discussed above can be mapped to
topics as they are ordered in existing CS1 and CS2 courses. We
will to make these assignments publicly available, indicating on
them what programming, mathematical, and digital sound
concepts they cover so that others can make use of them.
Additionally, we add to a repertoire of MATLAB exercises that
we have already developed for digital sound (which can be made
available to the reader.) We also plan to offer a redesign of
computer science courses, from the ground up, incorporating
concepts of digital media throughout (digital audio, video, and
multimedia programming), in an effort to help revitalize the
curriculum. This is part of two NSF grant projects that include
multiple faculty workshops each year.

8. ACKNOWLEDGMENTS
We would like to acknowledge the work of our students: Dan
Applegate, Tyson Badders, Joshua Bennett, John Brock, Daniel
Habib, Shanee Karriem, and Nate Vogt. This work was supported
by a National Science Foundation CCLI grant DUE-0717743.

9. REFERENCES
Below are some references that we have found helpful in the
development of our own courses:
[1] Burg, Jennifer. The Science of Digital Media. Prentice-Hall,

2008.
[2] Ifeachor, Emmanuel C., and Barrie W. Jervis. Digital Signal

Processing: A Practical Approach. Addison-Wesley, 1993.
[3] Loy, Gareth. Musimathics: The Mathematical Foundations

of Music. Vols. I and II. Cambridge, MA: The MIT Press,
2006.

[4] Smith, Julius O., III. Mathematics of the Discrete Fourier
Transform (DFT) with Audio Applications. 2nd ed. Seattle:
Book Surge Publishing, 2007.

[5] Tranter, Jeff. Linux Multimedia Guide. Cambridge, MA:
O’Reilly, 1996.

[6] Winkler, Todd. Composing Interactive Music: Techniques
and Ideas Using MAX. Cambridge, MA: The MIT Press,
1998.

