
Learning to Program through Digital
Audio and MIDI Applications

Jennifer Burg
Department of Computer Science
Wake Forest University
Winston-Salem, NC

Funded by NSF grant DUE1323593, entitled "Computing in the Arts—A Community Building Initiative,” a
collaborative grant with College of Charleston, Wake Forest University, and UNC Asheville

• If you’re not familiar with digital audio,
MIDI, or computer programming,
imagine this course is for you.

• If you are familiar with digital audio,
MIDI, and computer programming,
imagine teaching this course.

•Hang on to your hats! We’re going to
move fast!

Lesson One: The Physics and Mathematics
of Sound

•Main concept: Sound is the result of
vibrations of air molecules, causing air
pressure to rise and fall in a pattern that
propagates from the source of the sound to
the hearer of the sound.

Lesson One: The Physics and Mathematics of Sound

Sound Wave

Lesson One: The Physics and Mathematics of Sound

Single Frequency Sounds (One Pitch)

• The note D.

• The rising and falling air pressure that creates a single frequency
sound can be modeled by a sine function.

• 𝑦 = 𝐴𝑠𝑖𝑛2𝜋𝑓, where A is the amplitude and f is the frequency

Lesson One: The Physics and Mathematics of Sound

Frequency, Perceived as Pitch

• The frequency of a single-frequency sound – that is, the rate, per
second, at which the air pressure rises and falls – is measured in
Hertz (abbreviated Hz).

• The frequency is perceived as pitch by the human hearing system.

The notes C, E, and G

Lesson One: The Physics and Mathematics of Sound

Complex Sounds

• Any sound, no matter how complex, can be represented
mathematically as the sum of frequency components.

• For example, this chord in the key of C is the sum of three
frequency components: the notes C, E, and G.

Lesson One: The Physics and Mathematics of Sound

Lesson Two: The Mathematics of Musical
Sound

•Main concept: In the tradition of Western
music, certain sound frequencies are used
and combined in sequences of notes
(melodies) and combinations of notes
(chords and harmonies).

Lesson Two: The Mathematics of Musical Sound

Notes on a Piano Keyboard

• Notes on a piano keyboard are labeled with letters.

• The notes correspond with specific frequencies. For example,
“middle C” on the keyboard has a frequency of 262 Hz.

• In the tradition of Western music, only certain fixed frequencies
are generally used.

middle C (only part of keyboard shown)

Notes in a Chromatic Scale

• A scale is a sequence of notes that our ears have been trained to
recognize as a pattern in Western music.

• A chromatic scale uses 13 frequencies in a row such that each
frequency is multiplied by

12
2 (the twelfth root of 2) to get the next

one. In this way, at the note at the end of the scale has 2 times the
frequency of the first note. The notes are separated by an octave.

• The notes in the chromatic scale are considered to be a semitone
apart.

Lesson Two: The Mathematics of Musical Sound
262 Hz 2 * 262 = 524 Hz

Chromatic Scale
one semitone between successive notes

1 1 1 1 1 1 1 1 1 1 1 1

Lesson Two: The Mathematics of Musical Sound

Notes in a Diatonic Scale

• The diatonic scale is a sequence of frequencies that our ears have been
trained to recognize, the familiar

do, re, mi fa, sol, la, ti, do

• The successive notes in the diatonic scale are separated by the
following number of semitones: 2 2 1 2 2 2 1

• A diatonic scale can be started on any initial note, as long as it follows
the pattern 2 2 1 2 2 2 1.

Lesson Two: The Mathematics of Musical Sound

Keys

• A key in music has a home position (the starting note). It is
represented by the number of sharps or flats (essentially, the
black keys on a piano) that must be used to get the pattern
of semitone steps 2 2 1 2 2 2 1 for the diachronic scale.

• You can play a song in one key and then in another, and it
will sound “the same.” The only difference in the way the
melody and harmonics will sound is how “high” or “low” they
are.

Lesson Two: The Mathematics of Musical Sound

Lesson Three: Digitizing Sound for a
Computer

•Main concept: Computers can’t use lists of
numbers that are infinitely long or numbers
that have infinitely fine precision; thus, sine
functions representing sound must be
discretized – that is, we must represent the
sine function of a single frequency sound as
a finite list of digital numbers (base 2).

Lesson Three: Digitizing Sound for a Computer

Binary – Base 2

• Computers operate on numbers that are represented in
binary – that is, base 2.

• To convert from binary number b to decimal value d
where b[i] represents the binary digit at position i:

𝑑 =

𝑖=0

𝑛−1

𝑏 𝑖 ∗ 2𝑖

Lesson Three: Digitizing Sound for a Computer

Digitization

• Digitization is the process of representing a continuous
function as a discrete function of base 2 numbers.

• For single-frequency sounds represented as sine
functions, this involves two steps:

– sampling – that is taking the value of the sine function
at evenly-spaced points in time

– quantization – that is, representing each value in base
two in a fixed number of bits

Lesson Three: Digitizing Sound for a Computer

Sampling and Quantization

Lesson Three: Digitizing Sound for a Computer

Sampling and Quantization

Lesson Three: Digitizing Sound for a Computer

Sampling

• The minimum sampling rate required in order to properly represent
the sound is twice the frequency of a single-frequency sound (or
twice the frequency of the highest frequency component for a
complex sound). This is called the Nyquist theorem.

minimum required sampling rate r:
𝑟 = 2 ∗ 𝑓

• If the sampling rate is too low, aliasing occurs. That is, the
recorded sound sounds lower than it really is.

Lesson Three: Digitizing Sound for a Computer

Aliasing

Lesson Three: Digitizing Sound for a Computer

Link to full
online tutorial:
Sampling and Aliasing

http://digitalsoundandmusic.com/flash/?tutorial=Sampling and Aliasing

Bit Depth
• The bit depth is the number of bits used for each sample.

• The bit depth determines the accuracy with which each sample is
represented.

• If you have b bits, you have 2b different sampling levels. You
have to round each sample to one of those level. The rounding
results in quantization error.

• 3 bits yields 23 = 8 sampling levels

Lesson Three: Digitizing Sound for a Computer

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Quantization Error Resulting from Rounding

Quantization Error Resulting from Rounding

Lesson Three: Digitizing Sound for a Computer

“CD-Quality” Sampling Rate and Bit Depth

• When you record a song in audio processing software, you’re
asked to choose the sampling rate and bit depth.

• What is called “CD-quality” sampling rate of 44,100 samples per
second, sometimes denoted as 44.1 kHz. CD-quality bit depth is
16 bits (i.e., 2 bytes) per sample, in stereo (two channels).

Lesson Three: Digitizing Sound for a Computer

Signal-to-Noise Ratio and Dynamic Range

• The bit depth determines the signal-to-noise ratio and the
dynamic range. In fact, these two things are mathematically the
same.

• Put mathematical formula here.

• Show picture.

• The dynamic range can be understood intuitively as the difference
between the loudest and softest parts you can represent in a
piece of music you record.

• When you solve the formula above, you get a dynamic range of
*** for a bit depth of b. For example,

Lesson Three: Digitizing Sound for a Computer

Audio Files

• Given a sampling rate of 44.1 kHz and bit depth of 2 bytes per
sample with two channels (stereo), the size of a 5 minute
uncompressed sound file would be:

• Put mathematical formula here.

• You’ll learn here how to create your own uncompressed sound
files. You can save them as WAV files (for a PC, file names ending
in .wav) or AIF files (for a Mac, files names ending in .aif or .aiff).

• Sound files are often compressed – for example, MP3 files.

Lesson Three: Digitizing Sound for a Computer

Lesson Four: Levels of Abstraction in Sound
Processing

•Main concept: You can work with sound a
various levels of abstraction from
–a high level of abstraction (where the details of
what the computer is doing are hidden from
you)

–to a low level of abstraction (where you are
creating a manipulating sounds “by hand” in
programs that you write yourself).

Lesson Four: Levels of Abstraction in Sound Processing

Writing Programs in the Programming
Language called C

• You can create sounds by evaluating sine
functions and saving the resulting values in a file.

• You can read in already existing sound files and
do things with them like filter out frequencies or
change the amplitude.

Lesson Four: Levels of Abstraction in Sound Processing

Writing Programs in MATLAB or Octave

•Octave is a freeware version of MATLAB.

• You can do the same things that you can do in C,
only the programming language is a little easier.

•Working with list of sound samples (called arrays
or vectors)

Lesson Four: Levels of Abstraction in Sound Processing

