Linear Equation Solving for
Constraint Logic Programming

Jennifer Burg* Peter J. Stuckey’ Jason C.H. Tai* Roland H.C. Yap'

Abstract

Linear constraint solving in constraint logic programming requires in-
cremental checks of the satisfiability of a system of equations and inequali-
ties. Experience has shown that Gauss-Jordan elimination and the simplex
method are efficient enough to be of practical value in the implementation
of CLP languages based on linear arithmetic constraints [1, 2, 4, 6, 7, 8].
However, these algorithms must be modified to accommodate the special
demands of CLP execution. First, they must be applied incrementally. Sec-
ondly, they must co-exist with backtracking. An added consideration is that
constraints containing new variables be brought into the constraint set effi-
ciently. Finally, the recognition of any variable for which a unique value has
been determined may be necessary for programs with non-linear constraints.
In light of the special nature of the CLP constraint-solving problem, it is dif-
ficult to make a clear theoretical argument in favor of one constraint solver
over another. Empirical comparisons are in order so that the nature of the
typical CLP program can be taken into account. The purpose of this paper
is to describe and empirically compare a number of direct linear arithmetic
constraint solvers for CLP, focusing on programs which contain only equa-
tions, or inequalities which immediately become ground.

1 Algorithms

In this section we define the different Gaussian-based algorithms for linear
equation solving that we consider.! They all use the same basic steps of
SJorward elimination and back substitution. The incremental equation-solving
problem is defined as follows:
Definition [Incremental equation solving] Given a sequence of equations
€1,...,6y return the smallest index 7 such that e; A --- A ¢; is unsatisfiable,
or m+1if ey A---Ae,, is satisfiable. A restriction is that e; 4 is not accessible
until the satisfiability of ey A --- A e; is known.

In this discussion we assume the variables over which the linear con-
straints are written are z1,...,2,. We assume there is a total ordering upon

*Wake Forest University, Winston-Salem, NC 27109, U.S.A, burg@mthcsc.wfu.edu

" University of Melbourne, Parkville 3052, Australia, {pjs,roland}@cs.mi.0z.au

‘Royal Melbourne Institute of Technology, Melbourne 3001, Australia
jtai@yallara.cs.rmit.oz.au

'Other strategies such as iterative or interval based linear equation solving methods
are beyond the scope of this paper. See for example [3].

the variables, where # < y denotes that variable & precedes y in the order-
ing. We extend the ordering to include oo such that z; < oo for 1 < ¢ < n.
The ordering that is used in the system is an important parameter. Usually
we will insist that variables are ordered by age, newer variables appearing
before older variables.

If ¢ is a linear expression ¢g + ¢1x1 + - - -+ ¢, 2, where each ¢;,0 < ¢ < n,
is a real number, then let vars(t) = {#; | ¢; # 0}. A linear equation e over
the variables x1,...,x, is of the form ¢o + 121 + - -+ cpxy, = do + diz1 +
-+-4d,z,. Denote by lhs(e) the expression cg+c121 +- - -+ ¢, and rhs(e)
the expression dg+ dyz1+ - -+ d,x, A term form of the equation e, denoted
term(e) is the term t = (dop — ¢o) + (d1 — ¢1)z1 + -+ - + (d,, — ¢,)2,,, Where
e 0=1.

If e is an equation with a term ¢ = ¢g+ 121+ - -+ ¢2, corresponding to
e, and x € vars(t),c; # 0, we say e may be may be written in a substitution
form for xj, denoted subs(e,xy) as follows.

T =80+ 5121+ Sk-1Tk—1 + Sk+1Tk1 + -+ ST (1)
where s; = (—¢;/cr), 1 <i # k < n. Call z; the subject of such an equation.
This form can be viewed as a substitution for variable z; that will replace
it with a linear expression not involving z;. Let ¢ = subs(e,x)), where
subs(e,) is given in equation (1) above. If t = do + dya1 + -+ -+ dpz, is a
linear expression, then ¢’ applied to t as a substitution, denoted ¢ o €/, is the
linear expression
(dot+diso)t- - +(dp—1+dpsp—1)rr_1+(dip1+dpspt1)21+ - +H(dp+dis,)z,
For example, if ¢’ is the equation 3 = 2 + x1 — 329 + x4 in substitution
form for x3, and ¢ is the linear expression —2z1 + o3 + 23, then t e ¢’ is the
expression 4 — hag + 224. We extend the notion of substitution to equations
in substitution form as follows: if e is of the form z; = ¢ then e o €' is the
equation x; =t e €.

Let A denote the empty sequence, and : represent the concatenation
operation for sequences. If O is a sequence of m objects then the length of
O, denoted |0, is m, and we let O;,1 < i < m, represent the i'" object in

1.1 The Generic Solver

We begin by presenting our generic solver, which incrementally applies some
type of Gaussian reduction to a sequence of constraints k. The second pa-
rameter of generic_solver(F, solver) defines the type of Gaussian reduction to
be employed and maintains F in solved form as described below.

1.2 Forward Elimination

A sequence of equations F = Fy : Fy : ---: E,, is in forward elimination
form if the following conditions hold:

ellach F; is in substitution form z,, = {¢;.

eloreach 1 <i<j<m,z, #z, and {z,,2s,,..., 7, fOvars(t;) = .

F is a sequence of equations, F'is a sequence of equations in solved form,
and f is an equation in substitution form.

generic_solver(£, solver)
Let F'= A
for i := 1 to |F|
(F, f) := solver(F, term(F;))
if f = false return ¢
elseif f # trivial
F:=F:f
return [F| 4 1

The following sequence is in forward elimination form

rs = 2 —|—$1 —|—3$2 — &3 — &4 —|—2$6
ry = -1 —2$2 —|—$3 —Zg (2)
r3 = 2 —|—$2 —|—2$4

Our first variant of the solver is given below. generic_solver(£, ffe) defines
a solver which employs an incremental variant of Gaussian elimination. Note
that the variable to be chosen as the subject of a new equation after forward
elimination is given by the function choose(t), which is left unspecified. (A
good heuristic is to choose the newest variable.)

F'is a sequence of equations in forward elimination form, f is an equation
in substitution form, ¢ is a linear expression, v is a variable, and ¢ is a
coeflicient.
ffe(F, t) make_substitution(?)

t := forward_elimination(', t) ift=c

[:= make_substitution(¢) if ¢ = 0 return trivial

return (F, f) else return false
forward_elimination(F', t) else

for j ;=1 to | F] v := choose(t)

t:=telF; [= subs(0 =t,v)
return ¢ return f

This incremental variant of Gaussian elimination maintains the sequence
of equations F in forward elimination form, which we define as a solved
form. In doing so, it uncovers a conflict in the constraint set if one exists.
It differs from the standard Gaussian algorithm in that back substitution is
not performed.

The ffe solver has the advantage that it makes support for backtracking
trivial. Because the solved form F' is modified simply by appending a new
equation onto the end of the sequence, earlier states of the solved form can
be recovered simply by deleting equations from the end.

1.3 Partial Forward Elimination

One of the special characteristics of equational constraints handled by CLP
systems is that new variables, that is, variables that have never previously
occurred in a constraint, appear quite often. Forward elimination as de-
fined above does not take advantage of the fact that an equation with a
new variable does not require any substitutions, since the new variable can
immediately be made the subject of the equation.

We can generalize the idea of not applying forward elimination in the case
of equations involving new variables, to the idea of applying only part of the
forward elimination step to each new equation. That is, we apply forward
elimination only until a variable that is a true parameter is discovered in the
equation. A true parameter (of a term) is defined as a variable which is not
the subject of any equation in F' and would remain in the term after the
substitutions defined by F have been exhaustively applied.

Partial forward elimination makes use of the ordering on the variables,
choosing least(t) as the subject of the new equation. If ¢ is a linear ex-
pression, then we define least(t) = « where z € vars(t) U {oo} and Vy €
vars(t), = < yVa = y. least(e) where e is an equation is defined as
least(term(e)). Note that the relation < respects the fact that variables are
ordered in terms of age; that is, new variables precede old variables. When
new variables appear in a new equation Fj;, one of them must be least(F;),
and hence least(F;) can immediately be made the subject of the new equa-
tion without substitutions. Full forward elimination can be implemented
efficiently, using a routine similar to that for partial forward elimination,
when choosing the least variable as the subject.

A sequence of equations £ = Fy : Fy : ---: F,, is in pfe form if the
following conditions hold:

eFach F; is in substitution form z,. = ¢; and z,, < least(t;).

eloreach 1 <i < j < |F|, z,, # 2y,

The following sequence is in pfe form where z; < z; iff ¢ < j.

T2 = 2 —r3 +a4
r3 = —1 +rg —x7 (3)
T = 2 +o2 +z5

generic_solver(F/, pfe) maintains F' in pfe form, which is also defined as a
solved form.

1.4 Back Substitution

One of the extra requirements made of an equation solver in the CLP context
is to provide explicit information about the fized variables, that is, those
variables which must take a fixed value. This information is used in delay-
based activities such as non-linear equation-solving or delayed evaluation of
predicates, in clause indexing, and in input/output and other extra-logical
operations. While forward elimination suffices for checking the satisfiability

Fis a sequence of equations in pfe form, f is an equation in substitution
form, ¢ is a linear expression, v is a variable, and c¢ is a coefficient.

pfe(£, t) partial_elimination(/', t)
t := partial_elimination(F', t) done = false
f := make_substitution(?) while (vars(t) # () and
return (F, f) done # true) do
v := least(t)
if v = lhs(f) for some f € F
ti=tef

else done := true
return ¢

of the constraint set, it does not necessarily provide information about fixed
variables. Consider the sequence of equations

14+ rotastaa =520+ 23+ 24=3 (4)
The forward elimination form of the equations is
rT = 5 —&Xy —¥3 —XT4
Ty = 3 —&¥3 —X4

From this it is not explicit that z; must take the fixed value 2.

One way to discover this information is to back substitute, applying the
substitutions defined by equations later in the sequence to equations earlier
in the sequence. In doing so, we put the sequence of equations F into
parametric form, defined as follows:

ellach F; is in substitution form z,, = {¢;.

eloreach 1 <i < j <|F|, 2, # 20,

ebor each 1 < j < |E|, {&y, 2y, .. "xTIEI} Nwars(t;) = 0.

Equations in parametric form partition the variables into two sets: the
variables appearing on the left hand side of exactly one equation (non-
parameters) and the variables appearing on the right hand side of equations
(parameters).

For the system (4), after applying the substitution for z3 to the equation
for 1 we obtain the system in parametric form:

ry = 2

Ty = 3 —&r3 —4
Now it is clear that xy must take the value 2. It is easy to show that if
equations £ in parametric form imply that some variable z; must take a
fixed value ¢, then x; = ¢ appears in F.

generic_solver(L, ffe-fbs) defines an incremental Gauss-Jordan solver.
Gauss-Jordan elimination combines forward elimination with back substitu-
tion to maintain a parametric form, our third solved form for the equations.
This is essentially the algorithm used by both CLP(R) [8] and CHIP [4].

Notice that the algorithm applies full forward elimination rather than
partial because back substitution will perform the substitutions in any case.

Fois a

equation in

ffe-fbs(F', 1)
t := forward_elimination(', t)
f := make_substitution(?)

sequence of equations
substitution form,

in parametric form, f is an
and ¢ is a linear expression.
back_substitute(F', f)
for j =1 to |F]
F]‘ = F]‘ [f

if f # false and f # trivial return F
F := back_substitute(I, f)

return (F, f)

The chief disadvantage of back substitution is the overhead to backtrack-
ing. Because we must be able to recapture earlier states of the solver, changes
must either be trailed (e.g. [8, 4]), or recovered by reversing the substitution
operations (e.g. [6]). In particular, since column pointers are also main-
tained to ensure that we don’t need to search for where back substitution
should be applied, this information must also be recovered.

1.5 Partial Back Substitution

Rather than performing full back substitution, it is possible for a CLP equa-
tion solver to do only partial back substitution. By this method, the solver
may perform fewer operations while identifying most, or even all, of the fixed
variables. In the simplest of these schemes, back substitution is done if a
fixed variable happens to be recognized. When all the variables on the right
hand side (rhs) of an equation for z are known to be fixed, then the equation
can be replaced by a simple equation of the form x = ¢. This may allow other
variables to be fixed. If F'is a sequence of equations, let groundable(F’) be
the set of equations of the form # = ¢ in F where ¢ is not a constant and for
each y € vars(t) there is an equation y = ¢ in F'.

This value-back-substitution approach is used in the solver executed by
generic_solver(F, ffe-vbs). ffe-vbs corresponds most closely to an incremental
version of the normal Gaussian elimination for linear equations.

Partial back substitution clearly does not uncover all the fixed variables.
For example, it would not find any fixed variables in system (4).

Beringer and De Backer propose a novel equation-solving algorithm that,
without performing full back substitution, is guaranteed to find all fixed
variables. (The idea is mentioned only briefly in [1]. We develop it in more
detail here.) The key intuition behind this scheme is based upon maintaining
in each equation at least one true parameter, that is at least one variable
which is not the subject of any other equation. If for an equation = = t,
least(t) is a true parameter, then x is not fixed. Thus, to identify all fixed
variables, we ensure that the least variable on the right hand side of each
equation is a true parameter. If this is not possible for some equation Fj,
then the subject of F; must be fixed.

We define a sequence of equations F to be in BDB form if

ebach F; is in substitution form z,, = ¢;, and z,, < least(t;).

F'is a sequence of equations in forward elimination form, f is an equation
in substitution form, ¢ is a linear expression, z is a variable, and ¢ is a
coeflicient.

ffe-vbs(I, t)
t := forward_elimination(/' , t)
f := make_substitution(t)
if f = false or f = trivial or f is not of the form o = ¢
return (F, f)
else
while 3F; € groundable(F : f)
t:=rhs(F;); x = lhs(F;)
t := forward_elimination(F’ , t)
Fo=(z=1)
return (F, f)

eloreach 1 <i < j <|F|, 2, # 20,
olbor each 1 <4 < |E|, least(t;) & {zy, ..., Tr g }-
Assuming z; < x; iff + < j, then the following sequence of equations is

in BDB form. 2z, = -1 +x3 —2x4 —3r5 “ag
X = —Z3 +r5 —s
e = 3 (5)
Ty = 25 +as

Below we describe a number of possible solvers for maintaining a system of
equations in this BDB form. The new equation is placed in BDB form as
follows: First, either partial elimination is applied twice or forward elimina-
tion applied so that the two least variables are true parameters. The least
variable is chosen to be the subject of the equation. However, the subject of
the new equation may be the least variable, and thus the designated true pa-
rameter, of some earlier equations in the sequence. Hence, for each of these
equations a new true parameter must be found. Either partial elimination or
forward elimination is used to find a new true parameter. We examine three

of the four possible BDB solvers, BDB-pfe-pbs, BDB-ffe-pbs, BDB-ffe-fbs.

Adding the equation 27 = —1 to the equations (5) using the solvers
BDB-pfe-pbs, BDB-ffe-pbs and BDB-ffe-fbs respectively yields the systems:
ry = -1 ry = -1
Ty = —6$5 —2$6 Ty = -3 —6$5 —Te
re = 3 re = 3
T4 = 2$5 —|—$6 T4 = 2$5 —|—$6
rs = 7$5 42 rs = 3 —|—7$5
ry = -1
Ty = —6 —6$5
re = 3
T4 = 2$5 —|—$6
rs = 3 -|—7$5

F'is a sequence of equations in BDB form, f is an equation in substitu-
tion form, s and ¢ are linear expressions, x and y are variables, and ¢ is
a coefficient. The specific algorithmic variant is parameterized by forw

and back.

BDB- forw-back(F, t)
if forw == ffe then ¢ := forward_elimination(I, t)
else ¢ := partial_elimination(/', t)
f := make_substitution(t)
if f = false or f = trivial return (F, f)
t:=rhs(f); x := lhs(f)
if forw == pfe then ¢ := partial_elimination(F', t)
for i := 1 to |F|
if @ = least(rhs(F}))
y = lhs(F}), s := rhs(F))
if back == fbs then s := forward_elimination(F": f, s)
else s := partial_elimination(F': f, s)
Fii=(y=s)
return (F, f)

Because they perform fewer back substitutions and thus alter fewer rows,
the BDB solvers hopefully have less backtracking overhead. Also only a
column pointer for the first variable on the right hand side of each equation is
required to efficiently implement the back substitution. As a result, in many
cases, fewer column pointers may be needed with BDB solvers compared
with the ffe-fbs solver.

2 Extensions

An important consideration for equation solvers inside a constraint logic
programming system is the accuracy of the solver. Floating point represen-
tation of numbers can lead to incorrect answers when the constraints define a
numerically unstable system. There are two pivoting methods for improving
the accuracy of equation solving: complete pivoting and partial pivoting.
Complete pivoting is not possible for incremental problems since the en-
tire problem is not known, but partial column pivoting is implementable by
defining choose(t) to pick the variable with the largest absolute value of the
coeflicient. Unfortunately partial pivoting is incompatible with those solvers
that use a fixed variable ordering, e.g. pfe, and the BDB solvers. In order
to use partial pivoting with ffe the forward elimination algorithm must be
implemented with the inefficient method described above, rather than with
a more eflicient method relying on a fixed variable ordering and doing the
substitution steps in the fixed order. Hence partial pivoting is easiest to add
to the ffe-fbs solver. We define the solver stable to be ffe-fbs with the partial
pivoting variable choice.

Another consideration is the optimization of access dead variables. Typ-
ical constraint programs involve intermediate variables which are used for
building constraints but then are never referred to in later computation.
Maintaining relationships about these no longer used variables, the so called
dead variables, is unnecessary and wastes solver execution time and space.
Global analysis methods [9] are able to determine when a variable becomes
dead, and the solver can take advantage of this information to simplify the
constraint store.

Consider the sum 1.0 program below. The variable 51 is used in two
equations, and after the second is never referred to again. (See [9].) Hence
it can be removed after the first reference. An optimized version sum 2.0
adds dead(V') annotations that instruct the solver to remove the variable V.

SUM 1.0 SUM 2.0
sumlist([1, 0). sumlist([], 0).
sumlist(X.Xs, S) :- sumlist(X.Xs, S) :-
S =X + S1, S =X + S1,
sumlist(Xs, S1). sumlist1(Xs, S1).

sumlist1([], S) :- S = 0, dead(S).
sumlist1(X.Xs, S) :-
S = X + 81, dead(5),
sumlist1(Xs, S1).

If a variable is dead and the subject of an equation, then it should be
back-substituted out of the remaining equations and the equation involving it
should be removed. For ffe-fbs the back substitution will already have been
done and thus just the row needs to be removed. Unfortunately, column
pointers are required for efficient back substitution. This places an extra
overhead on all the solvers other than ffe-fbs, which already has column
pointers. The solver dead is the ffe-fbs solver with additional machinery to
remove dead variable rows.

3 Empirical Results

In this section we compare our various solver algorithms in terms of execu-
tion speed, space, and accuracy. These comparisons were obtained using an
experimental version of CLP(R).

First we introduce our suite of example programs and goals. The first set
of programs are simple: sum sums a list of terms, where goal g1 adds a list of
100 variables, g2 adds a list of 100 of the same variable, and g3 adds a list of
the form [1,2,...,100]. £ib calculates Fibonacci numbers naively, where g1
calculates the 16" Fibonacci number, and g2 finds which Fibonacci equals
610; mort is a mortgage program, where all goals study a 30 year loan at
12%, g1 asks for payment given a principle of $20000, g2 asks for the prin-
ciple given the payment, and g3 asks for relationships between payment,
principle and balance. laplace determines temperatures on a square plate
with 100C on three sides and 0C on one side using a 13 * 13 finite element
matrix. inv is a matrix inversion program which inverts a 12*12 matrix.

gaus tests satisfiability of a system of 100 equations in 100 variables. ode is
a differential equation-solver (described in [5]) running a large deterministic
goal. msprimes is a magic square program where all numbers are differ-
ent primes. chem is a large program determining equilibrium constants for
chemical reactions. chess solves a chess puzzle from Sam Lloyd. circ solves
a circuit element preference problem for a 16 resistor circuit. ladder con-
structs and solves a ladder resistor circuit of size 100. mech reasons about
mechanical designs. Finally gaus-n attempts to find a satisfiable combina-
tion of constraints over 100 variables. There are 25 choices to be made, each
between two possible sets of 4 equations, to select a total of 100 equations.

The solver statistics of each program and goal above are given in Ta-
ble 1. These statistics are intended to be representative of the amount of
computation required and are mainly solver independent, except where the
program behaves differently because of non-linear constraints and fixed vari-
ables. Statistics include the size of the program in number of lines; the total
number of equations, variables, inequalities and non-trivial dead variables
encountered in the execution of the goal; and the peak number of equa-
tions and variables in the solver during execution. Some of the programs do
contain linear inequalities, but the amount is either relatively small or the
inequalities can be handled trivially. The last column gives the percentage of
equations that are encountered with a new variable. (The presence of a new
variable often simplifies equation solving). Programs chem, circ and mech
contain non-linear constraints which remain non-linear when encountered at
execution time, and as such they cannot run correctly on the solvers which
do not detect fixed variables. The ffe-vbs solver is able to run chem, but not
the other two since it does not detect all fixed variables. The stable solver is
unable to run ode in a reasonable time because back substitution becomes
very expensive with the large system of equations in ode.

Deterministic goals, that is those that run without backtracking, are
annotated (D) or (I) in Table 1. Note that even for deterministic goals,
backtracking information must be stored for the solvers that modify rows in
the equation solver, since during execution it is not clear that backtracking
may not occur. The deterministic goals for which indexing can determine
that no backtracking is required are annotated (I).

The solvers we investigate are those defined in the previous section. In all
cases except stable we assume choose(t) selects the least(t), and the variable
ordering is defined by placing newest variables first. Table 2 gives the total
execution times for the benchmarks using each of the solvers normalized to
the least such time. In order to be able to differentiate more reliably among
the timings, which can be quite close, we have used timings obtained from a
software simulator. These results ignore caching effects and pipelining, but
certainly agree with median clock times. The last lines are harmonic means
for the goals which every solver can run, for deterministic goals only, and
for non-deterministic goals for the full solvers.

Empirical results show that overall there is no best equation solver for

10

Program Lines Total Peak New%
Eqgs Vars 1Ineqs Dead Eqgs Vars
chem 370 | 246297 53926 482 — 8153 2520 19
chess 184 | 217406 7903 5518 — | 139394 115 2.2
circ 50 | 13873 102 0 27 2560 102 0.31
fib(gl) D 9 4557 3946 986 984 4004 3946 65
fib(g2) 13298 13161 40567 4000 4004 3946 69
gaus-n 563 2875 102 0 — 460 102 ~0
gaus I 268 200 100 0 — 158 100 ~0
inv I 35 4464 4032 0 1584 4090 4032 49
ladder D 108 567 498 19 355 556 498 33
laplace D 32 227 169 0 — 227 169 22
mech 600 | 16309 12833 643 — 1120 500 52
mort(gl) D 8 1141 1083 359 716 1141 1083 67
mort(g2) D 1141 1083 359 716 1141 1083 66
mort(g3) D 1139 1083 359 716 1139 1083 66
msprimes 19 | 550403 32 0 — 69 32 ~(0
ode I 151 | 81737 78904 0 64602 | 78964 78904 13
sum(g1) I 23 361 303 100 — 361 303 67
sum(g2) I 262 203 100 99 262 203 87
sum(g3) I 261 203 100 99 261 203 88
Table 1: Statistics for the benchmarks
ffe-fbs BDB
Program ffe pfe ffevbs | ffefbs stable | pfepbs ffepbs ffefbs
chem — —— 1.00 | 1.64 1.93 1.36 144 1.56
chess 1.00 1.04 1.40 | 1.28 1.29 1.23 1.23 1.26
circ 1.15 1.13 1.40 1.00 1.09
fib(gl) D 1.21 1.00 1.55 | 2.20 2.24 1.46 1.60 1.62
fib(g2) 1.00 1.60 1.23 | 1.56 1.58 1.16 1.27 1.28
gaus-n 2.43 2.43 2.67 | 1.00 1.02 1.62 1.62 1.75
gaus I 1.01 1.00 1.02 | 1.10 1.14 1.17 1.18 1.39
inv I 1.23 1.00 1.42 |1 1.90 2.75 3.77 2.00 2.28
ladder D 1.00 1.01 1.28 | 157 14.31 1.58 1.63 1.59
laplace D 1.00 1.21 1.13 | 1.83 10.59 2.26 1.69 1.93
mech 1.04 1.04 1.00 1.00 1.01
mort(gl) D 1.04 1.00 1.27 | 1.21 28381 1.33 1.33 1.35
mort(g2) D 1.07 1.00 1.31] 129 2271 1.37 1.38 140
mort(g3) D 1.24 1.00 1.32 | 117 42.21 1.34 1.32 1.32
msprimes 8.66 8.96 1.11 | 1.04 1.07 1.00 1.01 1.04
ode I 1.00 1.08 1.15 | 159 —— 2.24 1.66 1.84
sum(g1) I 1.04 1.00 1.28 | 1.37 1.38 1.33 1.34 1.37
sum(g2) I 1.05 1.00 1.21 | 1.21 1.22 1.36 1.38 143
sum(g3) I 1.04 1.00 1.20 | 1.12 1.12 1.22 1.21 1.24
HMean All 1.18 1.16 1.30 | 1.32 1.94 1.40 1.37 143
HMean Det 1.07 1.02 1.25 | 1.39 —— 1.53 144 1.52
HMean NDet 1.20 1.23 1.21 1.18 1.24

Table 2: Normalized execution times

11

use in a constraint logic programming system. However, we can observe that
certain solvers are better for certain types of programs. For the programs
without non-linears, the ffe and pfe algorithms do well, with two exceptions:
gaus-n and msprimes. In particular, msprimes is a bad case for both be-
cause they lose the ability to exploit clause indexing since ffe and pfe do
not determine all the fixed variables. Both ffe and pfe see effectively 550403
equations, while each of the other solvers sees only 18287 total equations in
the execution of msprimes, with the remainder handled by clause indexing.
The other exception is gaus-n. The back substitution phase of ffe-fbs, which
simplifies the equation systems in the constraint store, leads to a reduction
of work during the exploration of the search tree.

Overall for deterministic goals (D or I) the strategy of doing the least
possible work for determining satisfiability (pfe) is the most advantageous.
Thus pfe is generally the best choice where the identification of fixed variables
is not important. (Unfortunately for real programs fixed variables are usually
important.) pfe is always the fastest solver when the goal is deterministic
and the percentage of new variables is high (> 50%).

When computation is non-deterministic then consideration must be given
to speculative work. Thus, the back-substituting solvers fare better, since
they simplify the form of constraints to speed up later constraint solving.
Of the back-substituting solvers, the BDB-ffe algorithms perform uniformly
no more back substitutions than ffe-fbs, and always use less space. They
are not, however, generally faster, and are certainly less efficient than ffe-fbs
when there is deep backtracking over complex constraints. If we restrict
consideration to the large “real” programs chem, chess, circ, mech and
ode then BDB-ffe-pbs becomes the clear winner. Surprisingly it is the “mid-
dle path” BDB solver that wins out, avoiding the worst case behavior of
BDB-pfe-pbs, and performing uniformly faster than BDB-ffe-fbs.

Some preliminary results using two other prototype experimental CLP
systems with linear arithmetic (CLP(Real) and XPI) on a subset of the pro-
grams show similar results for the choice of fastest solver. For deterministic
programs, ffe and pfe are fastest. Where there is a large amount of non-
determinism, then the back-substituting solvers start to gain. CLP(Real)
chooses not to use column pointers for the back-substituting solvers, saving
space at the expense of requiring time to search for variables to be substi-
tuted out of equations. The preliminary results show that the absence of
column pointers is crucial to the efficiency of the back-substituting solvers.
For example, ffe-fbs becomes about 4 times slower than ffe for £ib g2. More
work is in progress with CLP(Real) and XPI.

Table 3 gives the normalized peak space usage for the solvers. These ex-
periments show that ffe-fbs and stable solvers are clearly the worst in terms
of space usage. This is because of the frequent back substitutions, which re-
quire that a significant amount of backtracking information be stored. The
best solvers in terms of space are generally the ones with no back substitu-
tion, ffe and pfe, unless the program is indexed deterministic (I), in which

12

case the solver state does not have to be saved for backtracking. In this case,
the BDB solvers are generally more space efficient (because back substitu-
tion simplifies the store). The exceptions to this generalization are inv and
sum for goals g2 and g3, which incur significant implementation overhead
for maintaining column pointers.

ffe-fbs BDB
Program ffe pfe ffevbs | ffefbs stable | pfepbs ffepbs ffefbs
chem _ 1.09 | 1.43 1.39 1.00 .17 117
chess 1.01 1.00 1.06 | 1.10 1.07 1.07 1.07 1.07
circ 1.03 1.07 1.30 1.04 1.00
fib(gl) D 1.86 1.00 2.04 | 2.15 2.15 1.27 2.04 2.04
fib(g2) 1.61 1.00 177 | 177 1.77 1.14 177 197
gaus-n 1.00 1.00 1.02 | 8.35 8.35 8.28 8.28 8.28
gaus I 1.91 191 1.94] 191 1.91 1.00 1.00 1.00
inv I 1.42 1.00 1.59 | 141 1.49 3.09 1.07 1.07
ladder D 1.00 1.03 1.25 | 1.73 12.39 1.54 144 144
laplace D 1.62 1.00 1.76 | 3.49 11.33 3.57 2.55 2.5b
mech 1.04 1.04 1.00 1.00 1.00

mort(gl) D | 1.00 1.25 1.25 | 1.50 1.75 1.25 1.25 1.25
mort(g2) D | 1.00 1.12 1.25 | 1.50 1.75 1.25 1.25 1.25
mort(g3) D | 1.00 1.00 1.20 | 1.40 2.00 1.40 1.20 1.20
msprimes 1.16 1.00 1.22 | 1.67 1.59 1.31 1.31 1.31
ode I 1.70 1.00 1.95| 2.26 —— 2.42 152 1.52
sum(g1) I 112 1.12 1.37] 1.12 1.12 1.00 1.00 1.00
sum(g2) I 1.00 1.00 1.16 | 1.33 1.33 1.16 1.16 1.16
sum(g3) I 1.00 1.00 1.20 | 1.20 1.20 1.20 1.20 1.20
HMean All 1.18 1.07 1.34] 1.61 1.83 1.40 1.36 1.36
HMean Det 1.21 1.09 143 | 1589 —— 1.42 1.29 1.29
HMean NDet 1.45 1.44 1.28 1.35 1.34

Table 3: Peak space usage

Surprisingly in these benchmarks, ffe-vbs captures almost all the fixed
variable information that the other back-substituting solvers do (with the
exception of circ), albeit usually at a later stage. This is because if every
variable in the solver is fixed then ffe-vbs will determine it. The advantage
of this can be seen for the program laplace, where ffe-vbs determines all
the fixed variables with much less space than any other back-substituting
solver. The disadvantage is shown for gaus-n, where the execution time is
the worst of all the solvers.

The penalties for a stable solver are clear: increased execution time and
space usage (and sometimes vastly increased execution time even to a point
where goals will not execute). The advantage can be seen in the graph in
Figure 1, which shows accuracy at the center of the matrix as a result of
running the laplace program on a matrix of size n. An error of k indicates
the value is within 10* of the correct answer. Once the error increases
beyond 2, the result is effectively meaningless. All BDB solvers have the
same accuracy and are shown by one plot. Dead variable elimination does not

13

change accuracy and is not displayed. The stable solver is clearly superior,
while the BDB solvers could be considered marginally more stable than the
remaining solvers.

6 S

ffe -—

pfe —+-
ffe-fbs -8-- A

BDB %
stable —4&-

pembemnbe—oA o

s s
L .
B A A A A A A KX

-8 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22

Figure 1: Error 10% of solvers on laplace versus size n

The advantages of dead variable elimination are shown in Table 4. Pro-
grams were analysed by hand to determine where (some of) the dead vari-
ables occur, and modified versions with dead annotations were constructed.
The solver dead is run on the annotated versions. The dead variables in the
benchmarks are removed by using the dead annotation, which does not make
use of the more efficient in-situ dead removal techniques. Hence the results
can possibly be improved using more sophisticated dead removal. The dead
solver is compared against the best non-back-substituting solver, pfe, and
the best back-substituting solver, BDB-ffe-pbs. Dead variable elimination
drastically improves space usage when it is available, making the dead solver
the most space efficient. It also usually reduces the execution time of the ffe-
fbs solver below that of the BDB-ffe-pbs. An interesting experiment would
be to add dead variable elimination to each of these solvers and compare the
effect. The extra overhead of handling full back substitution would indicate
that the advantages are not so great as for ffe-fbs. This is clearly an area for
future work.

14

Execution time Peak solver space

Program pfe ffefbs BDB dead pfe ffefbs BDB dead

circ — 145 126 1.00 | — 141 142 1.00
fib(gl) 1.00 220 160 195 |1.00 215 204 1.30
fib(g2) 126 123 1.00 1.15 | 1.00 177 197 1.09
inv 1.00 1.90 200 163 | 120 1.70 1.28 1.00
ladder 1.00 1.55 152 1.46 | 1.00 1.68 140 1.01
mort(gl) | 1.00 1.21 133 1.02| 248 297 248 1.00
mort(g2) | 1.00 1.29 138 1.08| 223 296 247 1.00
mort(g3) | 1.00 1.17 132 126 | 246 345 296 1.00
ode 1.00 147 154 113 | 226 5.11 344 1.00
sum(g2) 1.00 1.21 138 1.09| 1.94 257 225 1.00
sum(g3) 1.00 .12 121 112 164 196 196 1.00

Table 4: Dead variable elimination

References

(1]

H. Beringer and B. De Backer. Combinatorial Problem Solving in Constraint
Logic Programming with Cooperating Solvers. In Logic Programming: Formal
Methods and Practical Applications, C. Beierle and L. Pliimer (eds.). Elsevier
Science Publishers B. V. 1994.

J. Burg. Parallel Execution Models and Algorithms for Constraint Logic Pro-
gramming over a Real-Number Domain. PhD Dissertation. University of Cen-

tral Florida. 1992.

C.K. Chiu, J.H.M. Lee. Interval Linear Constraint Solving using the Precondi-
tioned Interval Gauss-Seidel Method. Proc. International Conference on Logic
Programming. (This volume). 1995.

M. Dincbas, P. Van Hentenryck, H. Simonis and A. Aggoun. The Constraint
Logic Programming Language CHIP. Proc. of the 2°¢ Intl. Conf. on Fifth
Generation Computer Systems. 249-264. 1988.

J.A. Harland and S. Michaylov. Implementing an ODE Solver: a CLP Ap-
proach. Technical Report 87/92. Department of Computer Science. Monash
University. 1987.

P. Van Hentenryck and V. Ramachandran. Backtracking without Trailing in
CLP(RrLin). Proc. ACM-SIGPLAN Conference on Programming Language De-
sign and Implementation. 349-360. 1994.

J-L. Imbert, J. Cohen and M.D. Weeger. An Algorithm for Linear Constraint
Solving: Its Incorporation in a Prolog Meta-Interpreter for CLP. Journal of
Logic Programming. 16(3-4). 235-253. 1993.

J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap. The CLP(R) Language
and System. ACM Trans. on Programming Languages. 14(3). 339-395. 1992.

A.D. Macdonald, P.J. Stuckey, and R.H.C. Yap. Redundancy of Variables
in CLP(R). Procs. International Logic Programming Symposium. 75-93. MIT
Press. 1993.

15

