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Abstract

Linear constraint solving in constraint logic programming requires in�
cremental checks of the satis�ability of a system of equations and inequali�
ties� Experience has shown that Gauss�Jordan elimination and the simplex
method are e�cient enough to be of practical value in the implementation
of CLP languages based on linear arithmetic constraints ��� 	� 
� �� �� 
��
However� these algorithms must be modi�ed to accommodate the special
demands of CLP execution� First� they must be applied incrementally� Sec�
ondly� they must co�exist with backtracking� An added consideration is that
constraints containing new variables be brought into the constraint set e��
ciently� Finally� the recognition of any variable for which a unique value has
been determined may be necessary for programs with non�linear constraints�
In light of the special nature of the CLP constraint�solving problem� it is dif�
�cult to make a clear theoretical argument in favor of one constraint solver
over another� Empirical comparisons are in order so that the nature of the
typical CLP program can be taken into account� The purpose of this paper
is to describe and empirically compare a number of direct linear arithmetic
constraint solvers for CLP� focusing on programs which contain only equa�
tions� or inequalities which immediately become ground�

� Algorithms

In this section we de�ne the di�erent Gaussian�based algorithms for linear
equation solving that we consider�� They all use the same basic steps of
forward elimination and back substitution� The incremental equation�solving
problem is de�ned as follows�
De�nition �Incremental equation solving� Given a sequence of equations
e�� � � � � em return the smallest index i such that e� � � � � � ei is unsatis�able�
orm�� if e��� � ��em is satis�able� A restriction is that ei�� is not accessible
until the satis�ability of e� � � � � � ei is known�

In this discussion we assume the variables over which the linear con�
straints are written are x�� � � � � xn� We assume there is a total ordering upon
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the variables� where x � y denotes that variable x precedes y in the order�
ing� We extend the ordering to include � such that xi � � for � � i � n�
The ordering that is used in the system is an important parameter� Usually
we will insist that variables are ordered by age� newer variables appearing
before older variables�

If t is a linear expression c�� c�x� � � � �� cnxn where each ci� � � i � n�
is a real number� then let vars�t� � fxi j ci �� �g� A linear equation e over
the variables x�� � � � � xn is of the form c� � c�x� � � � �� cnxn � d� � d�x� �
� � ��dnxn� Denote by lhs�e� the expression c��c�x�� � � ��cnxn and rhs�e�
the expression d��d�x�� � � ��dnxn A term form of the equation e� denoted
term�e� is the term t � �d� � c�� � �d� � c��x� � � � �� �dn � cn�xn� where
e	 � � t�

If e is an equation with a term t � c��c�x�� � � ��cnxn corresponding to
e� and xk 
 vars�t�� ck �� �� we say e may be may be written in a substitution

form for xk � denoted subs�e� xk� as follows�
xk � s� � s�x� � � � �� sk��xk�� � sk��xk�� � � � �� snxn ���

where si � ��ci�ck�� � � i �� k � n� Call xk the subject of such an equation�
This form can be viewed as a substitution for variable xk that will replace
it with a linear expression not involving xk� Let e� � subs�e� xk�� where
subs�e� xk� is given in equation ��� above� If t � d� � d�x� � � � �� dnxn is a
linear expression� then e� applied to t as a substitution� denoted t � e�� is the
linear expression

�d��dks���� � ���dk���dksk���xk����dk���dksk���xk���� � ���dn�dksn�xn
For example� if e� is the equation x� � 	 � x� � �x� � x� in substitution
form for x�� and t is the linear expression �	x� � x�� 	x�� then t � e� is the
expression 
� �x��	x�� We extend the notion of substitution to equations
in substitution form as follows� if e is of the form xi � t then e � e� is the
equation xi � t � e��

Let � denote the empty sequence� and � represent the concatenation
operation for sequences� If O is a sequence of m objects then the length of
O� denoted jOj� is m� and we let Oi� � � i � m� represent the ith object in
the sequence� Thus O � O� � O� � � � � � Om�

��� The Generic Solver

We begin by presenting our generic solver� which incrementally applies some
type of Gaussian reduction to a sequence of constraints E� The second pa�
rameter of generic solver�E� solver� de�nes the type of Gaussian reduction to
be employed and maintains F in solved form as described below�

��� Forward Elimination

A sequence of equations E � E� � E� � � � � � Em is in forward elimination

form if the following conditions hold�
�Each Ei is in substitution form xri � ti�
�For each � � i � j � m� xri �� xrj and fxr� � xr� � � � � � xrig�vars�tj� � 
�

	



E is a sequence of equations� F is a sequence of equations in solved form�
and f is an equation in substitution form�

generic solver�E� solver�
Let F � �
for i �� � to jEj

�F � f� �� solver�F � term�Ei��
if f � false return i

elseif f �� trivial
F �� F � f

return jEj� �

The following sequence is in forward elimination form
x� � 	 �x� ��x� �x� �x� �	x�
x� � �� �	x� �x� �x�
x� � 	 �x� �	x�

�	�

Our �rst variant of the solver is given below� generic solver�E� �e� de�nes
a solver which employs an incremental variant of Gaussian elimination� Note
that the variable to be chosen as the subject of a new equation after forward
elimination is given by the function choose�t�� which is left unspeci�ed� �A
good heuristic is to choose the newest variable��

F is a sequence of equations in forward elimination form� f is an equation
in substitution form� t is a linear expression� v is a variable� and c is a
coe�cient�
�e�F � t�

t �� forward elimination�F � t�
f �� make substitution�t�
return �F � f�

forward elimination�F � t�
for j �� � to jF j

t �� t � Fj

return t

make substitution�t�
if t � c

if c � � return trivial

else return false
else

v �� choose�t�
f �� subs�� � t� v�

return f

This incremental variant of Gaussian elimination maintains the sequence
of equations F in forward elimination form� which we de�ne as a solved

form� In doing so� it uncovers a con�ict in the constraint set if one exists�
It di�ers from the standard Gaussian algorithm in that back substitution is
not performed�

The �e solver has the advantage that it makes support for backtracking
trivial� Because the solved form F is modi�ed simply by appending a new
equation onto the end of the sequence� earlier states of the solved form can
be recovered simply by deleting equations from the end�
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��� Partial Forward Elimination

One of the special characteristics of equational constraints handled by CLP
systems is that new variables� that is� variables that have never previously
occurred in a constraint� appear quite often� Forward elimination as de�
�ned above does not take advantage of the fact that an equation with a
new variable does not require any substitutions� since the new variable can
immediately be made the subject of the equation�

We can generalize the idea of not applying forward elimination in the case
of equations involving new variables� to the idea of applying only part of the
forward elimination step to each new equation� That is� we apply forward
elimination only until a variable that is a true parameter is discovered in the
equation� A true parameter �of a term� is de�ned as a variable which is not
the subject of any equation in F and would remain in the term after the
substitutions de�ned by F have been exhaustively applied�

Partial forward elimination makes use of the ordering on the variables�
choosing least�t� as the subject of the new equation� If t is a linear ex�
pression� then we de�ne least�t� � x where x 
 vars�t� � f�g and �y 

vars�t�� x � y � x � y� least�e� where e is an equation is de�ned as
least�term�e��� Note that the relation � respects the fact that variables are
ordered in terms of age� that is� new variables precede old variables� When
new variables appear in a new equation Ei� one of them must be least�Ei��
and hence least�Ei� can immediately be made the subject of the new equa�
tion without substitutions� Full forward elimination can be implemented
e�ciently� using a routine similar to that for partial forward elimination�
when choosing the least variable as the subject�

A sequence of equations E � E� � E� � � � � � Em is in pfe form if the
following conditions hold�

�Each Ei is in substitution form xri � ti and xri � least�ti��
�For each � � i � j � jEj� xri �� xrj

The following sequence is in pfe form where xi � xj i� i � j�
x� � 	 �x� �x�
x� � �� �x� �x	
x� � 	 �x� �x�

���

generic solver�E� pfe� maintains F in pfe form� which is also de�ned as a
solved form�

��� Back Substitution

One of the extra requirements made of an equation solver in the CLP context
is to provide explicit information about the �xed variables� that is� those
variables which must take a �xed value� This information is used in delay�
based activities such as non�linear equation�solving or delayed evaluation of
predicates� in clause indexing� and in input�output and other extra�logical
operations� While forward elimination su�ces for checking the satis�ability






F is a sequence of equations in pfe form� f is an equation in substitution
form� t is a linear expression� v is a variable� and c is a coe�cient�
pfe�F � t�

t �� partial elimination�F � t�
f �� make substitution�t�
return �F � f�

partial elimination�F � t�
done �� false
while �vars�t� �� 
 and

done �� true� do
v �� least�t�
if v � lhs�f� for some f 
 F

t �� t � f
else done �� true

return t

of the constraint set� it does not necessarily provide information about �xed
variables� Consider the sequence of equations

x� � x� � x� � x� � � � x� � x� � x� � � �
�

The forward elimination form of the equations is
x� � � �x� �x� �x�
x� � � �x� �x�

From this it is not explicit that x� must take the �xed value 	�
One way to discover this information is to back substitute� applying the

substitutions de�ned by equations later in the sequence to equations earlier
in the sequence� In doing so� we put the sequence of equations E into
parametric form� de�ned as follows�

�Each Ei is in substitution form xri � ti�
�For each � � i � j � jEj� xri �� xrj �
�For each � � j � jEj� fxr� � xr�� � � � � xrjEj

g � vars�tj� � 
�
Equations in parametric form partition the variables into two sets� the

variables appearing on the left hand side of exactly one equation �non�
parameters� and the variables appearing on the right hand side of equations
�parameters��

For the system �
�� after applying the substitution for x� to the equation
for x� we obtain the system in parametric form�

x� � 	
x� � � �x� �x�

Now it is clear that x� must take the value 	� It is easy to show that if
equations E in parametric form imply that some variable xj must take a
�xed value c� then xj � c appears in E�

generic solver�E� �e�fbs� de�nes an incremental Gauss�Jordan solver�
Gauss�Jordan elimination combines forward elimination with back substitu�
tion to maintain a parametric form� our third solved form for the equations�
This is essentially the algorithm used by both CLP�R� �
� and CHIP �
��

Notice that the algorithm applies full forward elimination rather than
partial because back substitution will perform the substitutions in any case�
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F is a sequence of equations in parametric form� f is an
equation in substitution form� and t is a linear expression�
�e�fbs�F � t�

t �� forward elimination�F � t�
f �� make substitution�t�
if f �� false and f �� trivial

F �� back substitute�F � f�
return �F � f�

back substitute�F � f�
for j � � to jF j

Fj �� Fj � f
return F

The chief disadvantage of back substitution is the overhead to backtrack�
ing� Because we must be able to recapture earlier states of the solver� changes
must either be trailed �e�g� �
� 
��� or recovered by reversing the substitution
operations �e�g� ����� In particular� since column pointers are also main�
tained to ensure that we don�t need to search for where back substitution
should be applied� this information must also be recovered�

��� Partial Back Substitution

Rather than performing full back substitution� it is possible for a CLP equa�
tion solver to do only partial back substitution� By this method� the solver
may perform fewer operations while identifying most� or even all� of the �xed
variables� In the simplest of these schemes� back substitution is done if a
�xed variable happens to be recognized� When all the variables on the right
hand side �rhs� of an equation for x are known to be �xed� then the equation
can be replaced by a simple equation of the form x � c� This may allow other
variables to be �xed� If F is a sequence of equations� let groundable�F � be
the set of equations of the form x � t in F where t is not a constant and for
each y 
 vars�t� there is an equation y � c in F �

This value�back�substitution approach is used in the solver executed by
generic solver�E� �e�vbs�� �e�vbs corresponds most closely to an incremental
version of the normal Gaussian elimination for linear equations�

Partial back substitution clearly does not uncover all the �xed variables�
For example� it would not �nd any �xed variables in system �
��

Beringer and De Backer propose a novel equation�solving algorithm that�
without performing full back substitution� is guaranteed to �nd all �xed
variables� �The idea is mentioned only brie�y in ���� We develop it in more
detail here�� The key intuition behind this scheme is based upon maintaining
in each equation at least one true parameter� that is at least one variable
which is not the subject of any other equation� If for an equation x � t�
least�t� is a true parameter� then x is not �xed� Thus� to identify all �xed
variables� we ensure that the least variable on the right hand side of each
equation is a true parameter� If this is not possible for some equation Fi�
then the subject of Fi must be �xed�

We de�ne a sequence of equations E to be in BDB form if
�Each Ei is in substitution form xri � ti� and xri � least�ti��
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F is a sequence of equations in forward elimination form� f is an equation
in substitution form� t is a linear expression� x is a variable� and c is a
coe�cient�

�e�vbs�F � t�
t �� forward elimination�F � t�
f �� make substitution�t�
if f � false or f � trivial or f is not of the form x � c

return �F � f�
else

while �Fi 
 groundable�F � f�
t �� rhs�Fi�� x �� lhs�Fi�
t �� forward elimination�F � t�
Fi �� �x � t�

return �F � f�

�For each � � i � j � jEj� xri �� xrj �
�For each � � i � jEj� least�ti� �
 fxr� � � � � � xrjEj

g�
Assuming xi � xj i� i � j� then the following sequence of equations is

in BDB form� x� � �� �x� �	x� ��x� �x�
x� � �x� �x� �x�
x� � �
x� � 	x� �x�

���

Below we describe a number of possible solvers for maintaining a system of
equations in this BDB form� The new equation is placed in BDB form as
follows� First� either partial elimination is applied twice or forward elimina�
tion applied so that the two least variables are true parameters� The least
variable is chosen to be the subject of the equation� However� the subject of
the new equation may be the least variable� and thus the designated true pa�
rameter� of some earlier equations in the sequence� Hence� for each of these
equations a new true parameter must be found� Either partial elimination or
forward elimination is used to �nd a new true parameter� We examine three
of the four possible BDB solvers� BDB�pfe�pbs� BDB��e�pbs� BDB��e�fbs�

Adding the equation x� � �� to the equations ��� using the solvers
BDB�pfe�pbs� BDB��e�pbs and BDB��e�fbs respectively yields the systems�

x� � ��
x� � ��x� �	x�
x� � �
x� � 	x� �x�
x� � �x� �x�

x� � ��
x� � �� ��x� �x�
x� � �
x� � 	x� �x�
x� � � ��x�

x� � ��
x� � �� ��x�
x� � �
x� � 	x� �x�
x� � � ��x�
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F is a sequence of equations in BDB form� f is an equation in substitu�
tion form� s and t are linear expressions� x and y are variables� and c is
a coe�cient� The speci�c algorithmic variant is parameterized by forw
and back�

BDB�forw�back�F � t�
if forw �� �e then t �� forward elimination�F � t�
else t �� partial elimination�F � t�
f �� make substitution�t�
if f � false or f � trivial return �F � f�
t �� rhs�f�� x �� lhs�f�
if forw �� pfe then t �� partial elimination�F � t�
for i �� � to jF j

if x � least�rhs�Fi��
y �� lhs�Fi�� s �� rhs�Fi�
if back �� fbs then s �� forward elimination�F � f � s�
else s �� partial elimination�F � f � s�
Fi �� �y � s�

return �F � f�

Because they perform fewer back substitutions and thus alter fewer rows�
the BDB solvers hopefully have less backtracking overhead� Also only a
column pointer for the �rst variable on the right hand side of each equation is
required to e�ciently implement the back substitution� As a result� in many
cases� fewer column pointers may be needed with BDB solvers compared
with the �e�fbs solver�

� Extensions

An important consideration for equation solvers inside a constraint logic
programming system is the accuracy of the solver� Floating point represen�
tation of numbers can lead to incorrect answers when the constraints de�ne a
numerically unstable system� There are two pivoting methods for improving
the accuracy of equation solving� complete pivoting and partial pivoting�
Complete pivoting is not possible for incremental problems since the en�
tire problem is not known� but partial column pivoting is implementable by
de�ning choose�t� to pick the variable with the largest absolute value of the
coe�cient� Unfortunately partial pivoting is incompatible with those solvers
that use a �xed variable ordering� e�g� pfe� and the BDB solvers� In order
to use partial pivoting with �e the forward elimination algorithm must be
implemented with the ine�cient method described above� rather than with
a more e�cient method relying on a �xed variable ordering and doing the
substitution steps in the �xed order� Hence partial pivoting is easiest to add
to the �e�fbs solver� We de�ne the solver stable to be �e�fbs with the partial
pivoting variable choice�






Another consideration is the optimization of access dead variables� Typ�
ical constraint programs involve intermediate variables which are used for
building constraints but then are never referred to in later computation�
Maintaining relationships about these no longer used variables� the so called
dead variables� is unnecessary and wastes solver execution time and space�
Global analysis methods ��� are able to determine when a variable becomes
dead� and the solver can take advantage of this information to simplify the
constraint store�

Consider the sum ��� program below� The variable S� is used in two
equations� and after the second is never referred to again� �See ����� Hence
it can be removed after the �rst reference� An optimized version sum ���

adds dead�V � annotations that instruct the solver to remove the variable V �

SUM ���
sumlist���� ���

sumlist�X�Xs� S� 	


S � X � S
�

sumlist�Xs� S
��

SUM ���
sumlist���� ���

sumlist�X�Xs� S� 	


S � X � S
�

sumlist
�Xs� S
��

sumlist
���� S� 	
 S � �� dead�S��
sumlist
�X�Xs� S� 	


S � X � S
� dead�S��
sumlist
�Xs� S
��

If a variable is dead and the subject of an equation� then it should be
back�substituted out of the remaining equations and the equation involving it
should be removed� For �e�fbs the back substitution will already have been
done and thus just the row needs to be removed� Unfortunately� column
pointers are required for e�cient back substitution� This places an extra
overhead on all the solvers other than �e�fbs� which already has column
pointers� The solver dead is the �e�fbs solver with additional machinery to
remove dead variable rows�

� Empirical Results

In this section we compare our various solver algorithms in terms of execu�
tion speed� space� and accuracy� These comparisons were obtained using an
experimental version of CLP�R��

First we introduce our suite of example programs and goals� The �rst set
of programs are simple� sum sums a list of terms� where goal g� adds a list of
��� variables� g� adds a list of ��� of the same variable� and g� adds a list of
the form ��� 	� � � � � ����� fib calculates Fibonacci numbers naively� where g�
calculates the ��th Fibonacci number� and g� �nds which Fibonacci equals
���� mort is a mortgage program� where all goals study a �� year loan at
�	�� g� asks for payment given a principle of �	����� g� asks for the prin�
ciple given the payment� and g� asks for relationships between payment�
principle and balance� laplace determines temperatures on a square plate
with ���C on three sides and �C on one side using a �� � �� �nite element
matrix� inv is a matrix inversion program which inverts a �	��	 matrix�
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gaus tests satis�ability of a system of ��� equations in ��� variables� ode is
a di�erential equation�solver �described in ���� running a large deterministic
goal� msprimes is a magic square program where all numbers are di�er�
ent primes� chem is a large program determining equilibrium constants for
chemical reactions� chess solves a chess puzzle from Sam Lloyd� circ solves
a circuit element preference problem for a �� resistor circuit� ladder con�
structs and solves a ladder resistor circuit of size ���� mech reasons about
mechanical designs� Finally gaus�n attempts to �nd a satis�able combina�
tion of constraints over ��� variables� There are 	� choices to be made� each
between two possible sets of 
 equations� to select a total of ��� equations�

The solver statistics of each program and goal above are given in Ta�
ble �� These statistics are intended to be representative of the amount of
computation required and are mainly solver independent� except where the
program behaves di�erently because of non�linear constraints and �xed vari�
ables� Statistics include the size of the program in number of lines� the total
number of equations� variables� inequalities and non�trivial dead variables
encountered in the execution of the goal� and the peak number of equa�
tions and variables in the solver during execution� Some of the programs do
contain linear inequalities� but the amount is either relatively small or the
inequalities can be handled trivially� The last column gives the percentage of
equations that are encountered with a new variable� �The presence of a new
variable often simpli�es equation solving�� Programs chem� circ and mech

contain non�linear constraints which remain non�linear when encountered at
execution time� and as such they cannot run correctly on the solvers which
do not detect �xed variables� The �e�vbs solver is able to run chem� but not
the other two since it does not detect all �xed variables� The stable solver is
unable to run ode in a reasonable time because back substitution becomes
very expensive with the large system of equations in ode�

Deterministic goals� that is those that run without backtracking� are
annotated �D� or �I� in Table �� Note that even for deterministic goals�
backtracking information must be stored for the solvers that modify rows in
the equation solver� since during execution it is not clear that backtracking
may not occur� The deterministic goals for which indexing can determine
that no backtracking is required are annotated �I��

The solvers we investigate are those de�ned in the previous section� In all
cases except stable we assume choose�t� selects the least�t�� and the variable
ordering is de�ned by placing newest variables �rst� Table 	 gives the total
execution times for the benchmarks using each of the solvers normalized to
the least such time� In order to be able to di�erentiate more reliably among
the timings� which can be quite close� we have used timings obtained from a
software simulator� These results ignore caching e�ects and pipelining� but
certainly agree with median clock times� The last lines are harmonic means
for the goals which every solver can run� for deterministic goals only� and
for non�deterministic goals for the full solvers�

Empirical results show that overall there is no best equation solver for
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Program Lines Total Peak New


Eqs Vars Ineqs Dead Eqs Vars

chem ��� ����	� 
�	�� ��� � �

� �
�� 
	
chess 
�� �
���� �	�� 


� � 
�	�	� 


 ���
circ 
� 
���� 
�� � �� �
�� 
�� ���

fib�g
� D 	 �

� �	�� 	�� 	�� ���� �	�� �

fib�g�� 
��	� 
�
�
 ��
� ���� ���� �	�� �	
gaus
n 
�� ���
 
�� � � ��� 
�� ��
gaus I ��� ��� 
�� � � 

� 
�� ��
inv I �
 ���� ���� � 

�� ��	� ���� �	
ladder D 
�� 
�� �	� 
	 �

 

� �	� ��
laplace D �� ��� 
�	 � � ��� 
�	 ��
mech ��� 
���	 
���� ��� � 

�� 
�� 
�
mort�g
� D � 

�
 
��� �
	 �
� 

�
 
��� ��
mort�g�� D 

�
 
��� �
	 �
� 

�
 
��� ��
mort�g�� D 

�	 
��� �
	 �
� 

�	 
��� ��
msprimes 
	 

���� �� � � �	 �� ��
ode I 


 �
��� ��	�� � ����� ��	�� ��	�� 
�
sum�g
� I �� ��
 ��� 
�� � ��
 ��� ��
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use in a constraint logic programming system� However� we can observe that
certain solvers are better for certain types of programs� For the programs
without non�linears� the �e and pfe algorithms do well� with two exceptions�
gaus�n and msprimes� In particular� msprimes is a bad case for both be�
cause they lose the ability to exploit clause indexing since �e and pfe do
not determine all the �xed variables� Both �e and pfe see e�ectively ���
��
equations� while each of the other solvers sees only �
	
� total equations in
the execution of msprimes� with the remainder handled by clause indexing�
The other exception is gaus�n� The back substitution phase of �e�fbs� which
simpli�es the equation systems in the constraint store� leads to a reduction
of work during the exploration of the search tree�

Overall for deterministic goals �D or I� the strategy of doing the least
possible work for determining satis�ability �pfe� is the most advantageous�
Thus pfe is generally the best choice where the identi�cation of �xed variables
is not important� �Unfortunately for real programs �xed variables are usually
important�� pfe is always the fastest solver when the goal is deterministic
and the percentage of new variables is high �� �����

When computation is non�deterministic then consideration must be given
to speculative work� Thus� the back�substituting solvers fare better� since
they simplify the form of constraints to speed up later constraint solving�
Of the back�substituting solvers� the BDB��e algorithms perform uniformly
no more back substitutions than �e�fbs� and always use less space� They
are not� however� generally faster� and are certainly less e�cient than �e�fbs

when there is deep backtracking over complex constraints� If we restrict
consideration to the large  real! programs chem� chess� circ� mech and
ode then BDB��e�pbs becomes the clear winner� Surprisingly it is the  mid�
dle path! BDB solver that wins out� avoiding the worst case behavior of
BDB�pfe�pbs� and performing uniformly faster than BDB��e�fbs�

Some preliminary results using two other prototype experimental CLP
systems with linear arithmetic �CLP�Real� and XPI� on a subset of the pro�
grams show similar results for the choice of fastest solver� For deterministic
programs� �e and pfe are fastest� Where there is a large amount of non�
determinism� then the back�substituting solvers start to gain� CLP�Real�
chooses not to use column pointers for the back�substituting solvers� saving
space at the expense of requiring time to search for variables to be substi�
tuted out of equations� The preliminary results show that the absence of
column pointers is crucial to the e�ciency of the back�substituting solvers�
For example� �e�fbs becomes about 
 times slower than �e for fib g�� More
work is in progress with CLP�Real� and XPI�

Table � gives the normalized peak space usage for the solvers� These ex�
periments show that �e�fbs and stable solvers are clearly the worst in terms
of space usage� This is because of the frequent back substitutions� which re�
quire that a signi�cant amount of backtracking information be stored� The
best solvers in terms of space are generally the ones with no back substitu�
tion� �e and pfe� unless the program is indexed deterministic �I�� in which

�	



case the solver state does not have to be saved for backtracking� In this case�
the BDB solvers are generally more space e�cient �because back substitu�
tion simpli�es the store�� The exceptions to this generalization are inv and
sum for goals g� and g�� which incur signi�cant implementation overhead
for maintaining column pointers�
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Table �� Peak space usage

Surprisingly in these benchmarks� �e�vbs captures almost all the �xed
variable information that the other back�substituting solvers do �with the
exception of circ�� albeit usually at a later stage� This is because if every
variable in the solver is �xed then �e�vbs will determine it� The advantage
of this can be seen for the program laplace� where �e�vbs determines all
the �xed variables with much less space than any other back�substituting
solver� The disadvantage is shown for gaus�n� where the execution time is
the worst of all the solvers�

The penalties for a stable solver are clear� increased execution time and
space usage �and sometimes vastly increased execution time even to a point
where goals will not execute�� The advantage can be seen in the graph in
Figure �� which shows accuracy at the center of the matrix as a result of
running the laplace program on a matrix of size n� An error of k indicates
the value is within ��k of the correct answer� Once the error increases
beyond 	� the result is e�ectively meaningless� All BDB solvers have the
same accuracy and are shown by one plot� Dead variable elimination does not

��



change accuracy and is not displayed� The stable solver is clearly superior�
while the BDB solvers could be considered marginally more stable than the
remaining solvers�
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Figure �� Error ��k of solvers on laplace versus size n

The advantages of dead variable elimination are shown in Table 
� Pro�
grams were analysed by hand to determine where �some of� the dead vari�
ables occur� and modi�ed versions with dead annotations were constructed�
The solver dead is run on the annotated versions� The dead variables in the
benchmarks are removed by using the dead annotation� which does not make
use of the more e�cient in�situ dead removal techniques� Hence the results
can possibly be improved using more sophisticated dead removal� The dead

solver is compared against the best non�back�substituting solver� pfe� and
the best back�substituting solver� BDB��e�pbs� Dead variable elimination
drastically improves space usage when it is available� making the dead solver
the most space e�cient� It also usually reduces the execution time of the �e�
fbs solver below that of the BDB��e�pbs� An interesting experiment would
be to add dead variable elimination to each of these solvers and compare the
e�ect� The extra overhead of handling full back substitution would indicate
that the advantages are not so great as for �e�fbs� This is clearly an area for
future work�

�




Execution time Peak solver space
Program pfe �efbs BDB dead pfe �efbs BDB dead
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Table 
� Dead variable elimination
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