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Abstract:  This paper describes a collaboration among computer scientists, dancers, and 

musicians on a production entitled “Fibonacci and Phi.”  Thematically, the production 

explored mathematical concepts that have aesthetic appeal, capturing the ways in which 

mathematical beauty gives shape to nature and art, and expressing the human response to 

these forms.  Technically, the production tested the limits of parallel cluster computation 

in real-time multimedia and performance art.  The result was a dance performance that 

wove together science and art in a way intended to draw new audience members into both 

realms.  

The History 

 The Winston-Salem Alban Elved Free Space dance project began with a question:  

How well can artists and scientists communicate, and what might they create if they try?  

The first Free Space production was a collaboration between Alban Elved Dance 

Company and Duke University scientists.  The centerpiece of their 2001 performance 

was a ring of infrared cameras, called Argus, which sensed the dancers’ motions and 

displayed them from multiple perspectives, adding novel and unsettling dimensions to the 

motions and space.  (Argus was the one hundred-eyed monster of Greek mythology.) 

 In 2002, the Alban Elved Dance Company approached faculty of the Wake Forest 

University Department of Computer Science to explore the possibility of a similar 

collaboration.  The result was “Fibonacci and Phi,” a one and one half hour production 
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staged in December 2003 that explored the intriguing ubiquity of the sequence 

1,1,2,3,5,8,11,… and the Golden Ratio, Phi, in the beauty of natural and artistic creations.    

Computer scientists produced digital images and movies, fractal-generating programs, 3-

D and stereo animations, and even poetry, while musicians contributed digitally-produced 

music in intervals and cadences of Fibonacci and Phi –  all to be woven together by 

Alban Elved choreographer Karola Luttringhaus.   

The Inspiration 

 The Fibonacci sequence and the Golden Ratio, Phi, have been well-known to 

scientists and mathematicians since ancient times.  While the Fibonacci sequence is 

deceivingly simple, this sequence is found in an amazing number of natural forms, 

ranging from the spiral of nautilus sea shells to the growth of leaves on a branch and 

seeds on the face of a sunflower.  The sequence also is evident in the mathematical 

properties of fractals.  Where the Fibonacci sequence appears, we generally find Phi, the 

Golden Ratio, as well.  Phi’s definition is also simple. If a line segment is divided into a 

smaller part A and a larger part B, and the ratio of the length of A to the length of B is the 

same as the ratio of the length of B to the whole segment, then this ratio is the Golden 

Ratio, Phi.  Given its first explicit definition by Euclid more than 2000 years ago, Phi has 

been associated with the discovery of irrational numbers, the proportions of classic 

paintings and architecture, and the geometry of beautiful phenomena of nature.    

 The dance performance was woven together with a poem entitled “Phi,” written 

by one of the computer scientists.  (The poem is given at the end of the paper.)  The 

reading of the poem was divided among the dance pieces of the performance, one or two 

stanzas at a time per dance, with digital imagery as a backdrop on stage.  Thematically, 
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the performance explores the human need to decipher the cryptic messages of Fibonacci 

and Phi – to “say and count” the beauty around us, putting it into words and analyzing it 

with pure mathematics, thereby helping us to understand the beauty and make it our own.  

  

Mise-en-Scène 

During the dance numbers of “Fibonacci and Phi,” a variety of digital images 

were projected on two screens – one standard white screen 40 × 25 feet at the back of the 

stage, and the other a translucent black scrim in the foreground.  The images included an 

opening montage reflecting the myriad visions of our waking and sleeping lives; 3-D 

animated mannequins controlled in real-time by dancers via joystick and mimicked by 

other dancers on stage; a fractal tree that grew leaves in the form of words and phrases,  

shedding these leaves to create a poem “on the fly”; digital movies and images of fractals 

designed to suggest a sunrise in the opening number and a night sky “galaxy” fractal in 

closing; and a real-time animation of a Mandelbrot fractal through which dancers move 

in a playful and competitive duet.  This paper focuses on the technical challenges of the 

real-time fractal animation.  (For a more detailed description of the entire production, see 

“Dancing with Fractals and Antique Snowflakes Through the Magic of Fibonacci and 

Phi” at http://www.cs.wfu.edu/~burg/papers/DancingWithFractals.pdf.) 

The Problem 

 For the “Fibonacci and Phi” production, we decided to take on the challenge of 

animating a Mandelbrot fractal in real-time in response to the movements of dancers.  

This entailed designing a way for the dancers to communicate with the fractal-generating 

program and parallelizing the fractal generation to keep up with the speed of the dancers.  
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While parallel implementations of fractal generation abound, we know of no other system 

that does fractal computation coordinated with dancers' movements in a real-time 

performance.    

The first step in the design was the communication interface between the dancers 

and the fractal computation program.  In previous productions, the Alban Elved Dance 

Company had used a movement-to-MIDI converter to generate MIDI sounds in response 

to the dancers’ motion.  The movement-to-MIDI converter works as follows:  Laser 

beams are aimed across the stage such that when the dancers move through them, 

breaking the beams, a MIDI signal is generated.  Our innovation to this system was to 

capture the signal and, rather than generate a MIDI sound, send it to a computer as a 

message to recompute the Mandelbrot fractal.  Thus, the movement-to-MIDI device was 

directly connected to a computer located backstage.   

 Early experiments made it clear that sequential computation of the Mandelbrot 

fractal would not be sufficiently fast for real-time animation, so the second step in the 

design was to implement a parallel solution.  The choreography was to have dancers 

moving through the laser beams, each time signaling that the fractal should be 

recomputed so that it looked just slightly closer than the previous frame. How many 

times per second would the fractal need to be redisplayed and recomputed in order to 

create the effect of moving closer into the infinitely self-replicating structure, always with 

the same perfect 1024 × 768 full screen resolution?   For smooth animation, each step had 

to be small – only a few pixels closer in each dimension.  For fast movement, with each 

step so small, the fractal would have to be recomputed and redisplayed several times per 

second. 
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 We decided to use an MPI parallel implementation of the Mandelbrot 

computation on a Linux cluster.  The network connectivity between the stage and Linux 

cluster is pictured in Figure 1.  The stage is pictured in Figure 2. 

 
Figure 1.  Network and Hardware Setup of Fractal Computation System 

 

 
Figure 2.  Fractal Duet in “Fibonacci and Phi.” 
(A still clip extracted from a digital video shot by  

Ching-Wan Yip, Wake Forest University.) 
 

 

 5



When the dancers move through one of six laser beams, a signal is sent to the movement-

to-MIDI converter, which forwards the signal to a computer backstage.  Depending on 

which beam is broken, the signal could indicate that the fractal should be recomputed in, 

out, up and in, down and in, left and in, or right and in, where in and out mean on a 

smaller scale and on a larger scale, respectively.  Moving in gives the audience the 

illusion of driving into the fractal. The computer runs a client program that forwards the 

message to the master process of the Linux cluster.  (The computer on stage is called the 

client computer.)  The master process divides the work of computing the fractal’s pixel 

colors among n dedicated processors.  Using X Windows functions, the master process 

sends the data back to the stage, which is connected to a projector that displays the fractal 

at a resolution of 1024 × 768 on a screen at the back of the stage that is 40 feet × 25 feet. 

Based on this set up, preliminary analysis identified three possible bottlenecks in 

the animation.  Table 1 lists these bottlenecks and strategies for speeding up the 

computation and communication. 

Possible Bottleneck Possible Solutions 
computation of pixel colors parallel implementation on Linux cluster 
communication among processes of the 
cluster 

• myrinet interprocess network 
communication (as opposed to 
ethernet) 

• run-length encoding of pixel data 
communication of pixel data from master 
process to computer on stage 

gigabit ethernet connection from client 
computer to Linux cluster 

Table 1.  Possible Bottlenecks and Solutions 
  
 The problem was to speed up the computation of each frame to the point that 

navigation through the fractal would be, from the audience’s point of view, both smooth 

and sufficiently fast to be interesting.  The visual speed of the navigation is a product of 

how quickly a section of the fractal appears to grow larger or “get closer.”  The 
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smoothness of the navigation is a product of how much difference there is in the size of a 

given area of the fractal from one frame to the next.  A smoother navigation has less 

difference between one frame and the next, but then to make the “zoom in” sufficiently 

fast, it is necessary to redisplay frames at a high rate.  Subjective evaluations were made 

of the properties of “speed of navigation” and “smoothness.” 

More objectively, the problem was to find ways to speed up each of the potential 

bottlenecks, to measure the extent to which our programming and network changes in 

fact improved performance, to determine if one of the bottlenecks dominated the others, 

and ultimately to animate the fractal at the optimum rate for what was subjectively 

determined to be fast, smooth animation. 

The fractal computation program is based on the well-known simple iterative 

equation 

czzf += 2)(  

where c and z are complex numbers.  To compute a pixel’s color, c is initially the pixel's 

position and z is 0, and  is computed repeatedly for a maximum number of 

iterations or until the value converges. The result is a "classic" Mandelbrot fractal like the 

one shown in Figure 2.  This is the fractal used in the “Fibonacci and Phi” fractal duet. 

czzf += 2)(

 Variations of the Mandelbrot fractal, called Julia fractals, can be created by 

mapping the initial z to the pixel’s position and appropriately selecting c to remain 

constant for each pixel.  Figure 3 shows a Julia fractal we designed for the closing “Night 

Sky” piece of the dance performance.  The design was created by finding a constant c 

that produced a galaxy-like shape, creating a suitable color map, and painting random 
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points of light at densities varying by color map to soften the edges and created a 

twinkling star effect as repeated computations zoom in on the fractal. 

 
Figure 3.  Julia Fractal Designed to Resemble a Galaxy in a Night Sky 

 

 In the discussion that follows, one image of a fractal will be called a frame.  The 

computation of a frame is obviously a challenge for real-time animation.  Let yx× be the 

resolution of the fractal and let t be the maximum number of iterations to compute one 

pixel.  Then the worst-case complexity for computing one frame is 

  tyx **

which for our application is  

000,432,78610007681024 =∗∗  

The complex number computation is done as follows:  z is given by  and c 

is given by  as described above.  Let z_new be the value of z that will become the 

input to the subsequent computation, with components  and .  Consider 

first what  yields. 
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To do this computation using only real number values (with 1− implicit in the 

imaginary component of each complex number), we need to separate out the real from 

the imaginary components (the ones with a factor of i), as we have done in the last line 

above.  This gives 
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_ 22

 and 

iiri czznewz +∗= *2_  

Thus, each pixel computation requires 4 multiplications and 3 additions.  Clearly, not all 

pixels will require the maximum number of iterations – only those that are painted black.  

The frames with the most black are the most expensive to compute. 

 The second potential bottleneck is the interprocess communication among cluster 

processes, a function of the amount of data to be sent.  Communication from the master 

to the slaves is trivial, involving a small amount of data.  The master tells each slave the 

range of values on the complex number plane to which the pixel values are to be mapped.  

Initially, the range is -3.5 to 0.5 in the x direction and -1.5 to 1.5 in the y direction, but as 

we zoom in on the fractal this range shrinks, yielding closer and closer views.  

Communicating the dimensions of the complex number plane requires only four values – 

beginning and ending positions in both the x and y directions. 
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 Communication from the slaves to the master requires more data than 

communication from the master to the slaves – b∗∗7681024  bytes of data, where b is 

the number of bytes per pixel.  Without run-length encoding, this amount of data would 

be the same for all frames.   

To make the situation worse, the master process itself becomes a bottleneck, as all 

pixel data must reach the master process before the X Windows call is made for 

displaying the frame.  In an early version of the program, slave processes each wrote their 

pixel data directly to the X Windows server on the client computer.  However, this 

resulted in rows that came streaming across the screen one at a time.  For smooth 

redisplay, the program was rewritten so that the master stores all the pixels into a pixmap 

in memory, and then calls for the redisplay of the entire frame with one X Windows call.  

The “dead time” of the master process waiting for all slaves to report in with pixel data 

thus became a factor. 

The third potential bottleneck is the communication from the master process to 

the computer on stage.  This communication is done through repeated X Windows calls 

to set the color for a pixel or pixels as the pixmap is written, and a single call to 

XCopyArea to write each frame to the X Window after it has been constructed.     

Experiments 

 The first experiments were to determine, empirically, the average complexity of 

computing a frame and the average amount of data sent from the slaves to the master, 

comparing these values to the worst case.  For these experiments, the same 100 frames 

were computed each time, beginning with the Mandelbrot fractal over the complex 

number plane in the range [ ])5.1,5.1(),5.0,5.3( −− .  Zoom-in was repeated for 100 frames, 
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each time as if a pixel area had been selected that was two pixels smaller in each 

dimension (moving in one pixel on left, right, top, and bottom).  For example, in the first 

step, this would entail zooming in on the pixel area [1, 1022] in the x direction and 

[1,766] in the y direction.  (Every fourth frame, the y direction was not changed in order 

to maintain the 4:3 ratio of the frame.)  The new pixel range was mapped to the complex 

number plane, and this area was then recomputed and redisplayed at the original 

resolution – 1024 × 768 – resulting in a closer view of the area with no loss of resolution 

detail.  The 1st, 33rd, 67th, and 100th frames of the computation are shown in Figure 4. 

 

 
1st frame 

 
33rd frame 

 
67th frame 

 
100th frame 

Figure 4.   1st, 33rd, 67th, and 100th frame of Mandelbrot fractal 
 
 With the 100 frames fixed for the experiments, the total number of multiplications 

and additions remains constant, independent of the number of cluster processes and 

variations in network technology. 

 The average, minimum, and maximum number of iterations for the 100 frames is 

given in Table 2.  (If i is the actual number of iterations, then the number of 
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multiplications and additions would be 4*i and 3*i, respectively, as discussed above.)  

The table shows that on average, only about 8% of the maximum possible number of 

iterations had to be performed to compute a frame. 

maximum # of 
iterations possible 
per frame (case 
where all pixels are 
black) 

average # of 
iterations over all 
100 frames we 
computed 

minimum # of 
iterations over all 
100 frames we 
computed 

maximum # of 
iterations over all 
100 frames we 
computed 

786,432,000 65,468,128 10,799,199 133,629,685 
Table 2.  Maximum, minimum, and average number of iterations  
performed in computing the pixel colors of the Mandelbrot fractal 

 
 In the next refinement, run-length encoding was implemented to reduce the 

amount of pixel data sent between the slaves and the master.  Without run-length 

encoding, the amount of data would be a constant b∗∗7681024  per frame.  Run-length 

encoding consists of sending a two byte integer d and a two-byte color code to indicate d 

consecutive bytes of the same color, as opposed to sending d two-byte color codes.  

Given the nature of the fractal images, which have long runs of the same color pixels, 

RLE  reduces the data communication significantly.  Table 3 shows the maximum, 

minimum, and average number of bytes sent per frame over all 100 frames. 

100 Mbit/second Network Connection from Client 
to Cluster 

1000 Mbit/second (GigE) Network Connection 
from Client to Cluster 

ethernet connectivity  
in cluster 

myrinet connectivity  
in cluster 

ethernet connectivity  
in cluster 

myrinet connectivity  
in cluster 

av. 37650 av. 37650 av. 37650 av. 37650 
min 1282 min 19966 min 3978 min 21599 

4 
procs 

max 204812 

4 
procs 

max 91815 

4  
procs 

max 93990 

4 
procs 

max 89545 
av. 18842 av. 18842 av. 18842 av. 18842 
min 294 min 6384 min 458 min 7378 

8 
procs 

max 198182 

8 
procs 

max 41645 

8  
procs 

max 84269 

8 
procs 

max 40228 
av. 9435 av. 9435 av. 9435 av. 9435 
min 86 min 3818 min 146 min 3188 

16 
procs 

max 192357 

16 
procs 

max 19653 

16 
procs 

max 89121 

16 
procs 

max 20414 
Table 3.  Average, minimum, and maximum number of bytes per frame 

communicated per slave to the master over all 100 frames 
 
From these data, it can be seen that run-length encoding reduces the amount of data 

transmitted between the slaves and the master per frame by approximately 90%.  (For 
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example, with 4 processors, ethernet within the cluster, and Mbit/sec between client and 

cluster, the average data per frame is 600,1504*650,37 = bytes as opposed to the 

 bytes per frame required with no encoding.) 864,572,127681024 =∗∗

For a baseline, the average time needed to compute one frame using a sequential 

program and a 100 Mbit network connection from the client computer to the cluster was 

measured.  The result was that it took between 14 and 17 seconds to compute a frame, the 

time varying with network usage.  This was far from the goal of real-time animation.   

Pressured with an impending opening night for “Fibonacci and Phi,” we gave the 

problem all the network speed and computational power we had available, including a 

gigabit ethernet connection from the client computer to the Linux cluster, 16 processors 

on the cluster for the fractal computation, run-length encoding of pixel data sent between 

the slaves and master, and myrinet connectivity in the cluster.  The result was a 

smoothly-animated fractal that could be navigated by the dancers in real-time, with the 

last trigger in the “fractal duet” signaling a fast zoom-in into a black hole of the fractal.   

In retrospect, after the show we were interested in analyzing exactly which part of 

the final system resulted in the biggest benefit. Was the gigabit ethernet connection all 

the way from the client computer to the cluster really needed?  Was myrinet connectivity 

within the cluster actually necessary?  How many processors were optimum?  Would 

fewer than 16 processors actually be better because of the bottleneck funneling the X 

Windows data through the master process?  These questions were important in light of 

the fact that a road show was being planned for “Fibonacci and Phi.”  If myrinet 

connectivity wasn't crucial on the cluster, it would be easier to build a portable cluster to 

take on the road, and fewer processors would be easier as well. 
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 4 processors 8 processors 16 processors 
average  0.558267 Average 0.477561 average 0.467278 

minimum 0.433044 Minimum 0.383174 minimum 0.360396 

• 100 Mb/sec from 
client to cluster 

• ethernet connectivity 
on the cluster 

• slower graphics card 

maximum 0.959640 Maximu
m 

0.639695 maximum 0.630410 

average 0.551303 Average 0.466858 average 0.468283 

minimum 0.431126 Minimum 0.361114 minimum 0.359247 

• 100 Mb/sec from 
client to cluster 

• myrinet connectivity 
on the cluster 

• faster graphics card 

maximum 0.779139 Maximu
m 

0.600989 maximum 0.599170 

average 0.303111 Average 0.178108 average 0.128352 

minimum 0.102596 minimum 0.096622 minimum 0.098177 

• 1 gigabit/sec from 
client to cluster 

• ethernet 
connectivity on the 
cluster 

faster graphics card 

maximum 0.580423 maximum 0.439282 maximum 0.325958 

average 0.303086 Average 0.171172 average 0.137445 

minimum 0.100156 minimum 0.102299 minimum 0.106616 

• 1 gigabit/sec from 
client to cluster 

• myrinet connectivity 
on the cluster 

• faster graphics card 

maximum 0.624767 maximum 0.345077 maximum 0.325387 

Table 4.  Average, minimum, and maximum time to compute a frame for all 100 frames with varying  
cluster and client/server connectivity, varying number of processors on Linux cluster 
 

Table 4 shows the average amount of computational time needed to compute a 

frame using 4, 8, and 16 processors; myrinet or ethernet connectivity on the Linux 

cluster; and either gigabit/sec or 100 Mb/sec ethernet between the client computer and the 

Linux cluster.  These experiments show that with 16 processors, gigabit ethernet, and 
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myrinet, the fractal can be refreshed between 3 and 10 times a second.  This was certainly 

enough for smooth, fast navigation through the fractal.  It is interesting to note, however, 

that even less expensive resources may give sufficient power for the “fractal dance.”  

With only 8 processors and ethernet within the cluster, the fractal can be animated at a 

rate of 2 to 3 times per second, fast and smooth enough for an interesting visual effect in 

the dance.  These experimental figures indicate that it is possible to take the “Fibonacci 

and Phi” performance on the road with a smaller-scale, less expensive portable cluster. 

Table 5 shows the extent to which the transmission of pixel data saturates the 

network between the client computer and the cluster.  For 16 processors, an average data 

rate of 92 Mbit/sec using a 100 Mbit network connection as opposed to 235 Mbit/sec 

using gigabit ethernet indicates that gigabit ethernet speed between the client and the 

cluster makes a significant difference in the refresh rate of the animated fractal.  

  
100 Mbit/second Network Connection 

from Client to Cluster 
1000 Mbit/second (GigE) Network 
Connection from Client to Cluster 

ethernet connectivity  
in cluster 

myrinet connectivity  
in cluster 

ethernet connectivity  
in cluster 

myrinet connectivity  
in cluster 

4 
procs 

80 Mbit/sec 4 
procs 

82 Mbit/sec 4 
procs 

146 Mbit/sec 4 
procs 

146 Mbit/sec 

8 
procs 

92 Mbit/sec 8 
procs 

94 Mbit/sec 8 
procs 

235 Mbit/sec 8 
procs 

236 Mbit/sec 

16 
procs 

92 Mbit/sec 16 
procs 

94 Mbit/sec 16 
procs 

235 Mbit/sec 16 
procs 

304 Mbit/sec 

Table 5.  Network Usage from Client To Linux Cluster 
 

The benefit of myrinet connectivity within the cluster is also visible in Table 5, 

particularly in the difference between ethernet and myrinet for 16 processors.  The data 

rate between the client and the cluster is 235 Mbit/sec when the cluster has an internal 

ethernet connection, whereas it is 304 Mbit/sec when the cluster has an internal myrinet 

connection.  It may not be immediately clear why the data rate between the client 

computer and the cluster would be higher when the cluster, internally, has myrinet rather 
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than ethernet connectivity.  Table 3 and Figures 5 and 6 help to explain this behavior.   

One benefit of myrinet appears to be that it distributes the work load better among the 

processors, as indicated in the difference between the average, minimum, and maximum 

number of bytes sent from any slave process to the master.  There is less difference 

between the minimum and the average number of bytes transmitted per process for 

myrinet as opposed to ethernet.  (See Table 3.)  Figures 5 and 6 show the interprocess 

communication graphically, comparing the situation for myrinet (the top half of each 

figure) and ethernet (the bottom half) in the case of 4 processors.  Figure 5 represents the 

interprocess communication for the first fractal frame.  Figure 6 represents a later fractal 

frame. 

Consider Figure 5.  In the top half of the figure, each row represents one of the 4 

processors, the top one being the master.  Dark green sections indicate the process is 

“probing” or waiting for messages to be received.  Light green sections show the process 

receiving a message from another process.  Blue sections indicate the process is sending a 

message to another process.  The arrows in the figure depict the direction of the 

communication and connect the same send and receive operation.  According to the way 

the algorithm is written, the master gives 2 slices of the fractal frame to a processor, and 

then moves on to allocate the next 2 slices to any free processor.  The algorithm looks for 

free processes in order of process number, so lower numbered processes have a 

preference for getting more work.  With the slower ethernet connection, interprocess 

communication takes longer, and thus there is a greater chance that process 1 will have 

finished its fractal computation by the time that process 0, the master, is ready to send 

another slice.  With myrinet, computation and communication time achieve a better 
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balance, and thus higher-numbered processes get work more often than is the case in the 

ethernet cluster.  Figures 5 and 6 show this behavior in that the dark green blocks – wait 

blocks – are longer for higher numbered processes in the ethernet case than in the myrinet 

case. 

 
Figure 5.  Interprocess communication for 4 processors for first fractal frame.   

Top half of figure was taken during a run with myrinet in cluster.   
Bottom half of figure was same computation on a run with ethernet in cluster. 

 

 
 

Figure 6.  Interprocess communication for 4 processors for a fractal frame after the first one.   
Top half of figure was taken during a run with myrinet connection.   

Bottom half of figure was same computation on a run with ethernet connection. 
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Conclusions 

“Fibonacci and Phi” fulfilled multiple purposes, depending on the vantage points 

of audience members, artists, and scientists who participated in the production or enjoyed 

the performance.  The audience was introduced to the concepts of the Fibonacci sequence 

and the Golden Ratio through visual imagery accompanied by narrative and poetic 

interpretation.  The audience members were also made aware of the computational power 

of parallel, fast-network computation through an interaction of dance and fractal imagery.  

The computational analysis reflected in this paper serves as a case study for high 

performance computing that the authors will be able to use in future parallel computation 

courses – an example that will quickly interest students and will introduce concepts of 

high performance computing in an engaging, graphical medium.  The analysis is useful to 

the authors in helping them plan future dance/digital media/high performance 

computation collaborations, including the proposed road-show of “Fibonacci and Phi” 

using a portable 8-processor cluster with ethernet connectivity.  The authors intend this 

work to be the first in a series interdisciplinary works that bring art to the scientifically-

minded, and science and math to artists and humanists. 
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Phi 
 
What are these haunting messages 
Coded in cryptic languages 
Through sights and sounds and senses 
Speaking to us without words? 
 
And how do we decipher 
The beauty as it strikes us, 
By saying it or counting it 
Make it finally our own? 
 
Who hears the golden music best, 
Who sees with clearest vision? 
And can they tell me what they see 
And write down every note? 
 
A child has eyes still bright and true 
An ear open to voices. 
A child hears shouts of tiny “Whos” 
On dust specks in the air. 
 
A child knows worlds hold worlds inside 
Each world leads to another 
And angels dance on heads of pins 
When you reach infinity. 
 
But children don’t have words for this 
And insufficient numbers 
And as we age we want to say 
Or count what we have known. 
 
The ancients mathematicians sought 
A language most eternal 
And found in pure proportions 
A number timeless and divine. 
 
The golden ratio they called it 
And Phi in Greek we named it. 
And everywhere we find its mark 
In nature and in art. 
 
I see a message etched 
In a ragged rocky coastline 
And the pattern is repeated  
In the ripples at my feet. 
 
A fern unfurls its growing leaves 
Like nature’s own fresh fractal 
So I paint a fractal of my own 
To find the world inside. 
 
 
 
 

I try to read a message 
In the face of a sunflower 
But I’m blinded by the spirals 
Spinning left, and spinning right. 
 
The spirals leave my dazzled grasp 
A galaxy is born 
And sends to me through heaven’s time 
A metaphor of stars. 
 
A message whispers softly  
In the angles of a seashell 
And calls my soul to trace a curve 
Down paths that never end. 
 
I am told that these mute messages 
All have Phi locked within them. 
What is this magic number? 
And what secrets does it hold? 
 
We cannot write the number, 
So irrational by nature. 
Never ending, always changing 
As it steps toward the sublime. 
 
What would happen if we could 
Know the endless perfection? 
Say in words and in numbers 
What we don’t yet understand? 
 
If we mark the musical intervals 
With infinite precision 
Can we make a human symphony 
From the harmony of the spheres? 
 
If we trace the seashell’s spiral 
Down endless perfect angles 
Will we finally find the center 
And meet the eye of God? 
 
We cannot take the measure 
Of Your exquisite beauty 
Though it’s woven in the fabric 
Of our world and our flesh. 
 
We cannot say Your name 
Though it’s written in the sky 
Still we silently rejoice to read 
The messages You send. 
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