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Of the scientific disciplines taught at today's universities, computer science is the 

youngest, a child born of human introspection and ingenuity. Unlike the natural sciences, 
which seek to discover and understand the natural world around us, computer science is a 
unique combination of abstraction and invention. On the one hand, computers are fashioned 
in their essence from abstract logic, emerging from efforts to understand, formalize, and 
simulate human thought.  On the other hand, computers are ingeniously engineered machines 
originally invented to solve very real problems -- to do tedious, error-prone mathematical 
calculations; to process volumes of census data; to compute complex ballistic tables for 
missile trajectories; or to crack enemy codes during World War II.  Now, less than 60 years 
after the invention of ENIAC, EDSAC, and UNIVAC, computers have changed the way we 
communicate, learn, solve problems, do business, and make war. But how has computer 
science managed to bring together the power of abstraction and the creativity of invention?  
What are the fundamental ideas and advances that have led computer science to have such an 
impact on the modern world? 
 
Abstraction 
 Glory be to God for dappled things -- 
 For skies of couple-colour, as a brind'ed cow.... 
    Gerard Manley Hopkins 
  

The world is made up of a myriad of wonderful and varied things -- different colors, 
different shapes, different uses, each individual, each unique.  This great variety of things 
"counter, original, spare, and strange" is a diversity to be celebrated, as poet Gerard Manley 
Hopkins rejoices in his poem "Pied Beauty."  But there is another gift to be celebrated with 
regard to the rich variety of creation, and that is the human power of abstraction. 

What if we had to deal with all these things one by one, with no way to group them 
into categories, no way to think of them generally rather than individually?  Our minds 
simply could not handle the complexity.  Abstraction is the process of stripping away 
individual characteristics and thinking about only those qualities that matter for our purposes 
at the moment.  If I say to you, "Send me a postcard when you get to Paris!" neither one of us 
needs to picture a particular postcard.  We both understand quite well a class of objects that 
are, collectively, known as postcards -- generally rectangular, with a picture on one side and 
space for a note and address on the other.  The details are unimportant at the moment. 

Abstraction is arguably the most fundamental intellectual activity in the field of 
computer science.  Problem solving is made manageable by our ability to approach it at 
different levels of abstraction, which vary according to how closely we focus on the details.  
To program a computer, we give it a procedure, a sequence of instructions for solving a 
problem. As we develop this procedure, it is usually best to begin by backing away to get the 
big picture.  How do we find the median of a list of numbers, for example?  One way might 
be to (1) sort the list of numbers, (2) find the length of the list, and then (3) find the number 
in the middle of the sorted list.  It's easy to think about how solve to this problem if we begin 
at this high level of abstraction.  If instead we get bogged down from the beginning in 
working out the details of sorting numbers, we lose perspective on our overall task.  In the 
initial high-level procedure for finding the median, the sorting method can temporarily 



remain what computer scientists call a "black box."  We assume we can put a list of numbers 
in one end, and it comes out sorted.  Later, when we have designed our overall procedure for 
computing the median, we can specify the inner workings of the sorting procedure.  The 
usefulness of abstraction in managing the complexity of problem solving is even more 
apparent when the problem requires many more steps than our example.  Furthermore, one 
black box may in turn have other black boxes in it; that is, one subprocedure may contain 
more, lower-level subprocedures whose operations remain temporarily unspecified.  But by 
masking details until we are ready to consider them, we save ourselves from being 
overwhelmed by a complex problem. 

In computer programming, problem solving procedures are described abstractly in 
levels that descend from our human way of thinking, and arrive finally at a language that 
directly reflects the changing states of a machine in operation.  Eventually, the procedure 
must come down to something concrete and physical, the flipping of a switch or the toggling 
of a transistor.  The closer the symbolism is to the physical manifestation of the computer's 
changing states, the lower the level of abstraction.  The closer the symbolism is to human 
language and the concepts and processes represented, the higher the level of abstraction.  It is 
easiest for us to think in human language.  In the end, however, the machine has only the 
most basic of building blocks, two-state devices that know only yes or no, on or off, 0 or 1, 
true or false.  
 
Boolean Building Blocks 

When mathematician George Boole formulated his axioms for an algebra of logic in 
1854, he could not possibly have envisioned their importance to the future development of 
computing machines.  The mechanical computing devices envisioned by Blaise Pascal, 
Charles Babbage and other pre-20th century thinkers operated in the familiar base ten number 
system.  Boole’s logic laid the foundation for computing devices working in a base two, 
binary-valued number system.  

The fundamental idea of Boolean logic is simple. A variable can have only two 
possible values, true or false.  Analogous to arithmetic operators (addition, multiplication, 
etc.) that operate on numbers, Boole defined operators ---- and, or, not, implies, etc. -- that 
apply to true/false values.  The definitions of these operators tell us the result we get when 
we apply some operator to two particular operands.  The operators are named and defined in 
ways consistent with innate human logic and classical logical principles.  For example, say 
that it is true that "Spring is here."  Say that it is also true that "The tulips are blooming."  
Then, is the compound statement "Spring is here and the tulips are blooming" also true?  By 
our everyday reasoning, it is obviously true, and by Boole's definition of the operator and 
(denoted by ∧), it is true as well. 

What Boole did not foresee was how naturally his formal logic could lead to a 
computing machine.  True and false are easily represented by any device that can be in 
exactly one of two states at any given moment -- a mechanical relay or a transistor, for 
example.  True is simply "on" (i.e., the value 1) and false is "off" (i.e., the value 0).  Boolean 
logic was made-to-order for computational devices.  The implementers of the first computers 
in the 1940's discovered that two-state devices were simple, cheap, and easy to work with.  
Operands became inputs to the two-state devices, which were constructed to yield outputs 
consistent with the Boolean operations.  What could be done, then, with millions of these 
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two-state devices, connected in complex logical networks of 0's and 1's -- in digital circuits, 
that is?   

Just about anything, it turned out.  Early computers were built primarily to do 
numerical computations, but that was only the beginning.  Later, binary encoding was 
adapted for storing text and other non-numeric information as well.  Today, every school 
child knows how to manipulate sounds and images in the computer.  They do not have to 
understand that this data, too, is encoded as patterns of 0’s and 1’s obtained through 
digitization.  Knowingly or unknowingly, we utilize Boolean logic with each and every 
interaction with a modern computer.  Every symbol, number, instruction, or other datum 
stored in a computer is, at some level of abstraction, a collection of binary digits or bits.  
Every operation carried out in a computer’s circuits can, at some level of abstraction, be 
viewed as an operation in Boolean logic.   
 
Logic for Thinking Machines 

Boolean logic is an abstraction that can be realized concretely in the form of digital 
circuits, the logical wiring from which computers are constructed.  At the same time, 
Boolean logic is a rigorous mathematical system that attempts to mimic human thinking, 
specifying rules by which our reasoning operates.  Logicians realized that if these rules could 
be made definite and sure, not varying according to the subjects on which they are applied, 
perhaps the reasoning process could be automated in the form of a thinking machine.  In this 
sense, Boolean logic is a step in the direction of artificial intelligence. 

Let us consider how formal logic makes artificial intelligence possible.  Formal 
systems of logic like Boole's begin with propositions -- statements about the world that we 
know to be either true or false -- and rules for combining these to determine the truth or 
falsity of a group of propositions as a whole.  Remarkably, the rules are so consistent and 
inflexible that it doesn't matter at all what the propositions actually mean in order to reason 
about them.  How can this be so?  How can we possibly be logical with no regard to the 
subjects of our discourse?  

The secret, again, is in the power of abstraction.  Consider the logical operators 
defined in Tables 1, 2, and 3.  Each is defined in terms of two abstract propositions, P and Q.  
P might represent any proposition.  Perhaps it is, "Spring is here," as in our previous 
example.  Q might again be "The tulips are blooming."  P → Q would then denote "If spring 
is here then the tulips are blooming," a true compound proposition if we know that both P 
and Q, individually, are true to begin with.  But if we say that P denotes "Computers have 
eyebrows" and Q denotes "Pigs can fly" and we specify that P and Q are true, the compound 
proposition P → Q is just as true (i.e., "If computers have eyebrows then pigs can fly").  The 
point is that the truth value of P → Q can be computed without knowing what P and Q mean.  
We need only say whether P and Q, individually, are true or false. 

 
P Q P∧Q  P Q P∨Q  P Q P→Q 

false false false  false false false  false false true 
false true false  false true true  false true true 
true false false  true false true  true false false 
true true true  true true true  true true true 
Table 1.  Logical and.       Table 2.  Logical or.         Table 3.  Logical implies. 
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The implications to machine intelligence are profound.  Computers don't have much 
common sense.  They aren't very good at looking at the world around them and determining 
what is true and false at a basic level -- whether pigs can fly or tulips are blooming.  But they 
are good at representing the values true and false once the basic facts are given to them, and 
they can manipulate true/false values quite adeptly according to rules of logic.  Logical 
computation can be automatic, mechanical, and mindless in the sense that a computing 
machine need have no understanding of the subject of its reasoning.  But, mindless as it may 
be, the problem solving potential seemed enormous to the mathematicians of the 19th and 
early 20th centuries.  What could a machine do for us?  Prove theorems?  Establish whole 
systems of mathematics like arithmetic or geometry?  If we provided the basic facts, could 
computers stretch our understanding of the world by taking the facts to their logical limits? 

These questions were posed by philosophers, mathematicians, and logicians such as 
Charles Babbage, Gottfried Leibnitz, Alan Turing, Kurt Godel, Bertrand Russell, and Alfred 
North Whitehead long before the first electronic computers were built.  Answers emerged, as 
we shall see, as mathematical theory and computer engineering began to converge in the 
1930's. 

    
Mechanical Computation and Universal Computing Devices 
 The process of abstraction appears again in our efforts to understand the essence of 
computation itself.  It is a powerful thinking tool, this ability to strip away the incidental and 
particular and see a concept in its naked purity.  Abstraction was Alan Turing's special 
genius, the talent that ranks him among the founding fathers of computer science.  While 
working on urgent message-decryption problems in World War II and helping to develop 
technology that would lead directly to the first electronic computers,  Turing even more 
importantly was able to look beyond the particulars and see the great new idea. 

To lay bare the notion of mechanical computation and see what Alan Turing saw, we 
must forget about keyboards and computer screens and integrated circuits, and broaden our 
idea of a machine by thinking of it entirely in the abstract.  A machine is simply a mindless 
entity that changes from one state to another.  It doesn't have to be mechanical in the physical 
sense, like Charles Babbage's early computational device, a contraption of gears and levers 
and camshafts.  A machine doesn't require electromechanical relays or transistors.  The only 
requirement is that we be able to represent and prescribe the machine's change of states.  The 
great realization is that we need no more than a pencil and paper to "build" a machine, since 
it is a matter of describing the symbols it can recognize, the states it can be in, and precisely 
what causes it to change from one state to another. 

Turing arrived at just such a definition, an abstraction we call the Turing machine.  
Turing argued that mechanical computation is completely captured by a device of the 
following description:  Imagine that we have a "machine" that uses a fixed alphabet of 
symbols.  0's and 1's suffice, though other alphabets would work as well.  The machine has a 
tape of unbounded length on which strings of these symbols are written, and a "reading" 
device positioned over exactly one symbol at any given moment. We consider the machine's 
state at discrete moments in time. Supplied for the machine are rules which tell it what to do 
each time it reads a symbol. These rules depend on the symbol just read and the state the 
machine is in at that reading.  A rule can tell the machine to (1) move to the right or left, 
leaving the symbol unchanged or (2) move to the right or left, first rewriting the symbol to 
some other symbol in the alphabet.  Turing maintained that, while this machine may be slow 
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and inefficient, it can perform any computation that could be performed by any other 
machine, no matter how hi-tech or sophisticated.   

Turing captured, in the abstract, the essence of mechanical computation.  His 
calculating machine did not have to be constructed from wires or wheels or anything we 
normally associate with a machine.  In fact, each individual machine of this type can be 
described symbolically and its activity performed entirely with pencil on paper.  The device 
is mechanical not in a physical sense, but in the sense that all its actions are automatic and 
lacking spontaneity, completely prescribed by the symbols, rules, and states defined for it.  
Given a certain input of symbols, the Turing machine can go through only one sequence of 
actions.  To the machine, there is no meaning associated with its actions.  It is only the 
human creator of the machine who ascribes meaning to the input and output symbols. 
 Great minds had been circling around notions of mechanical computation for 
centuries, and in the first decades of the 20th century, mathematics, logic, and technology 
came together to bring the ideas to fruition.  A formal model of abstract computation was 
finally ripe for the plucking, and Turing was not the only one to reach for it.  Turing had 
ventured a model for a "universal" computing device, and in a doubletake, scientists of the 
1930's and 40's realized that other ostensibly quite different computational models were in 
fact equivalent to Turing's, including Kleene's recursive functions, Church's lambda calculus, 
and Post's rewrite rules.  This was as great a discovery as the abstract machine definition 
itself.  As mathematician Kurt Godel later noted with amazement, the concept of 
computability transcended the formalism in which it was expressed. 
 
Completeness and Computability 

From the beginning, investigations into abstract computation were motivated by 
efforts to understand how humans think and logically solve problems.  The goals were 
soaringly ambitious, taking abstraction to its very limits.  Could we describe, in precise 
mathematical language, the logical relationships that we all accept in some realm of thinking 
-- say arithmetic, for example?  Could we write these relationships in the form of rules that 
describe how one statement of truth can be logically transformed into another, rules that are 
so precise that even a mindless machine could be "programmed" to follow them?  Could we 
then write down in our formal language all the things we know to be true in the world we are 
describing (e.g., axioms), give the whole lot to the machine, and allow the machine to deduce 
every possible conclusion implied by the logic and the axioms?   

What an ambitious and tantalizing thought, one which tempted philosophers, 
logicians, and mathematicians for centuries.  This was mathematician and philosopher 
Gottfried Wilhelm von Leibnitz's great project in the 1600's:  to devise a formal and universal 
language of logic "in which all truths of reason would be reduced to a kind of calculus."  Like 
Turing, Leibnitz worked in both the abstract and the concrete, building one of the first 
calculating machines (the "calculus ratiocinator") at the same time that he explored the limits 
of formal logic. 

Over 150 years later, Leibnitz's goals had still not been realized, but neither had they 
been abandoned.  In the 1840's, Charles Babbage was working tirelessly on his Analytical 
Engine, a massive computing machine intended to demonstrate the possibilities of 
mechanical computation.  While Babbage worked on the concrete realization, George Boole 
continued in the more abstract vein, investigating  "the fundamental laws of those operations 
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of the mind by which reasoning is performed" and formulating, in the course of his inquiries, 
"some probable intimations concerning the nature and constitution of the human mind."  

Even as late as 1910, the pursuit of the ultimate theorem-proving system continued in 
the research of Alfred North Whitehead and Bertrand Russell, who aspired to construct a 
system that could derive all of mathematics through formal logical operations on a collection 
of axioms.  Mechanization -- the ability to prove theorems automatically -- remained a 
central issue of the research. Axioms could be treated by a machine purely as symbols with 
no meaning.  Based on their form and on precise rules of logic, a machine could rewrite these 
axioms from one form to another, and thereby prove theorems.  The machine need have no 
understanding whatsoever of what it is doing.   

To understand how logicians went about their task of formalizing the logic of 
arithmetic, let us consider some of the axioms that might form the basis of a theorem proving 
system.  We will draw examples from the domain of arithmetic over the natural numbers, a 
relatively simple system that logicians had hope of fully representing.   

Table 4 shows the kinds of statements that we might need to "tell" the computer, in 
the language of predicate logic (an extension of propositional logic). Axioms and inference 
rules like these give us a way of making deductions and transforming one logical statement 
into another.  They set us on the path to describing a complete system wherein all truths 
about arithmetic might be automatically deduced.  But how many axioms like these do we 
need as a base? What rules and axioms are necessary and sufficient so that all other theorems 
can be automatically derived from them?  Are there limits to the power of formal logic?  Is it 
possible to formally describe a self-contained logical system in which everything that is true 
can be proved, everything that is false can be disproved, and nothing can be proved both true 
and false -- that is, a system that is both complete and consistent?  In 1900, David Hilbert, 
one of the foremost mathematicians of his day, was optimistic, conjecturing in a preface to 
his famous twenty-three unsolved problems that if a proposition can be expressed within 
some formal mathematical system, then either its proof or its refutation must exist. 
 
Type of Statement Axiom Meaning 
axiom ∀x(P → (Q → P)) For all natural numbers x, if P is true of x, 

then "Q implies P" is true of x. 
axiom partially defining 
equality 

∀x, x = x For all natural numbers x, x is equal to 
itself. 

axiom partially defining 
the successor function 

∀x, y  (s(x) = s(y) → x = y) For all natural numbers x and y, if the 
successor of x is equal to the successor of y, 
the x is equal to y. 

axiom partially defining 
addition 

∀x, y (x + s(y) = s(x+y)) For all natural numbers x and y, x plus the 
successor of y is equal to the successor of 
 x + y. 

inference rule (P and (P → Q)) ⇒ Q  If P is true, and P → Q then Q must also be 
true. 

Note: ∀x means "for all x";  s(x) is the successor function, referring to "the successor of x" (i.e., the number after x) 
Table 4.  Axioms in the Arithmetic of Natural Numbers  
 
For many years logicians followed the trail of Hilbert's conjecture.  But in 1931, Kurt 

Godel brought down to earth logicians' ambitious plans to generate "truths" with the help of 
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computing machines.  In his Incompleteness Theorem, Godel showed that for any reasonably 
powerful, consistent system of logic or arithmetic that we might want to describe, there will 
always exist statements that are true, but that cannot be proved solely on the basis of the 
axioms and rules of the system. 

Godel's argument, in sketch, is as follows.  Say that in our system, we assert the 
following proposition: 

You cannot prove that this proposition is true. 
To see that a system containing such a proposition is either inconsistent or 

incomplete, consider the following.  First assume that the proposition is true.  Then, on the 
basis of what the proposition says, you can't prove that it is true, so the system must be 
incomplete.  Now say that the proposition is false.  Then on the basis of what the proposition 
says, you can prove that it is true, which would be inconsistent.1   

Godel's theorem effectively defeated hopes for a complete theorem-proving system, 
even in the relatively simple domain of arithmetic.  It did not imply, however, that automatic 
theorem proving was impossible -- just that it is possible to give true theorems to your system 
that it won't be able to prove.   

Similarly, limits were found to the computing ability of Turing machines and their 
equivalents.  It was concluded that all models for abstract computation had equivalent -- but 
not unlimited -- computing power.  Some problems simply cannot be solved by mechanical 
means.  The classic example is the halting problem, the problem of asking one Turing 
machine to tell us if another Turing machine will ever terminate its execution on some given 
input. In fact, it is impossible to write a program that can tell automatically, for any other 
program you might hand it, if that given program will ever stop executing on a given input.  
In general, the halting problem "does not compute." 

The news was not entirely bad.  It turns out that while, theoretically, there are more 
noncomputable problems than computable ones for computers, we are hard-pressed to come 
up with examples. Certainly, most of the computation humans are interested in doing lies in 
the computable realm.  Generally, the problems that cannot be solved by formal or 
mechanical means are the ones that take us to metalevels of logic and computation, questions 
like "Can this proposition be proven true?" or "Will this program ever terminate if I run it on 
this input?"  The inability of formal logic, separated from intuition, to answer metaquestions 
is intriguing in itself, one of those recurring roadblocks to mechanical computation that have 
a way of making us feel better about our human way of solving problems. 
 
Mind or Brain? 
 From the beginning, the development of computers has been tied up with the hope of 
creating an artificial intelligence, a machine whose abilities equal or exceed those of humans.  
Perhaps the biggest surprise has been that those tasks which are difficult for humans—
complex calculations and rote memorization—are easy for computers, whereas computers 
have difficulty understanding natural language, comprehending the physical world, planning, 
and adapting—tasks instinctive to and necessary for human survival. 
 Even though the nature of AI research has constantly evolved over the past fifty 
years, in truth there is still little consensus on issues as fundamental as whether we should 
seek to simulate or to duplicate intelligence.  To simulate intelligence is to make a machine 
                                                           
1 This informal argument captures the spirit of Godel's theorem, though a formal proof is based upon the Godel 
numbering system, whereby every proposition expressible in the system is given a unique integer number. 
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do the same thing that intelligent beings do -- that is, think -- using symbols and logical 
operations that mimic the workings of the mind.  To duplicate intelligence is to make a 
machine function like the brain, with its neurons and synapses and transmission of electrical 
impulses. 

Traditional AI is based on the symbol hypothesis of John Newell and Herbert Simon.  
This hypothesis states that a symbol system is all that is needed to give a machine the power 
of intelligent action.  From this perspective, the formalisms of Boolean and propositional 
logic form the basis of an artificial intelligence.  But we have already acknowledged that the 
key to the power of machine logic is to separate logical computation from meaning.  While 
logical machine problem solving may simulate thinking, is it really thought?   

John Searle tried to make clear the difference in his Chinese room parable.  Imagine 
that someone is inside a closed room, equipped with a myriad of complex rules that 
unfailingly dictate how to turn questions that are written in Chinese into sensible answers in 
the same language.  This person knows not one word of Chinese himself.  Questions written 
in Chinese are passed through a hole in the door, and our translater is given whatever time is 
needed to turn these into answers.  Does this person understand anything of the notes he is 
translating?  Clearly he does not, any more than the computer understands the meaning we 
may ascribe to the abstract symbols we ask it to manipulate. 

More recent AI research has turned to connectionism for a different approach to 
creating artificial intelligence.  This approach is based on creating networks of neuron-like 
entities, connected in a manner akin to the physical operation of the brain itself.  Experiments 
with these neural network computers show that they can be invested with considerable 
problem solving ability -- even, for example, controlling the movements of a robot as it 
attempts to move across a room, manuevering around the objects in its way.  But once again, 
can we fairly say that such a robot is intelligent?  How precisely do we have to model the 
functioning of the human brain before we can justifiably say that we have given a computer 
the power to think?  Is there some level of exact duplication of brain functioning that would 
finally yield the machine's self-awareness, the ultimate test in intelligence?  Whether or not 
machines can ever truly understand anything and be aware that they are thinking is an 
interesting philosophical question as deep and challenging as the human mind-body problem 
itself.  

 
From Abstract to Concrete, Symbol to Meaning, Science to Technology 

Ultimately, we move from the abstract to the concrete.  We want our computers to do 
something or solve something.  Show me what my yard will look like with its new 
landscaping.  Tell me how to get to 42nd street.  Calculate pi to the 20th digit.  Find the 
spelling errors in my memo.  Land a spacecraft on Mars. 

The movement from symbol to meaning, abstract to concrete, science to technology, 
has brought us to the world we live in today.  Once it was realized that computers are 
"universal" problem solvers, we no longer saw them as tedious number crunchers and 
realized their potential as all-purpose machines.  The devices that were originally invented to 
calculate missile trajectory tables and handle census data could just as well process words, 
draw pictures, and give us virtual worlds to explore. The abstract notion of a universal 
computing device came to have unexpected practical ramifications -- computers for all 
purposes, and accessible to everyone.  Computers became "personal," "user-friendly," and 
then "ubiquitous."   
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What were the great, real-world, technological advances that grew up with computer 
science and led us to the world we live in today?  From the layperson's point of view, the 
advances that have had the greatest impact are those that have made computers smaller, more 
useful, and more accessible, bringing them into our homes and everyday lives.  These 
advances began in hardware with the invention of the transistor in 1954, a two-state device to 
replace vacuum tubes and electromechanical relays.  The integrated circuit, a compact 
collection of transistors on a silicon chip, followed in 1959.  Picture the difference that 50-
some years have made.  In 1946, computer scientists were awed by ENIAC, a tangle of more 
than 17,000 interwired vacuum tubes, weighing over 30 tons and standing 100 feet long, 10 
feet high, and 3 feet deep.  Today, we take for granted microprocessor chips the size of one's 
thumbnail, on which are etched millions of transistors of far greater computational power.  
ENIAC had to be hard-wired for each particular task, a tedious and error-prone process.  Von 
Neumann's stored-program concept -- the idea that the instructions for program execution 
should be given to the computer symbolically rather than through hardware -- was quickly 
recognized as essential to the general usefulness of computers, and programming languages 
were born.  

Still, the smaller programmable computers of the 1960's were not something you 
would have in your home.  The language of computers was arcane and the applications were 
generally scientific or business-oriented.  People might want to use computers -- to 
communicate, play games, write letters, or prepare a budget -- but few had any desire to 
program them.  Better yet, let computers look and act like things we're comfortable with -- 
desktops, folders, papers, and trash cans, for example.  With this breakthrough idea, 
graphical user interfaces replaced text-based systems with their cryptic typed-in commands.  
Computers could be used by children, and even more surprisingly, their parents. 

It was quite natural that when computers became "personal" and individuals were 
given full-powered computers right on their own desks, the advantages of connecting them 
through networks became obvious. No longer did many users connect to one big mainframe 
master computer. Instead, networks of computers were linked together, sharing memory, 
resources, and information.  Computers became, perhaps most importantly for the layperson, 
a writing tool and a communication device. 

The most striking advance in computer technology of the last four decades, the one 
that has accelerated us into the Information Age, is the development of the Internet.  The 
reach of our computers now stretches from our desktops across the world, and in a matter of 
seconds.  Understanding how this could happen requires our acceptance of one of the biggest 
abstractions of all -- The World Wide Web.  What does it mean when we say that we are "on 
the Web," and how does that differ from being "on the Internet"? 

By now, the story of the Internet's creation is generally known.  Originally conceived 
by the U.S. government's Advanced Research Projects Agency as a network of computers 
that could communicate securely even in times of crisis, the ARPANET quickly grew under 
the National Science Foundation to accommodate academic researchers at universities 
around the world.  By 1984, the term Internet was in general use, referring to a network used 
largely for the exchange of electronic documents and messages.  But Internet use was 
reserved mostly for computer specialists who knew the arcane language of ftp, gopher, 
archie, and email.  Even these specialists tired of the text-based, type-it-in manner in which 
files had to be located and moved from one computer to another.  In the early 1990's, 
researchers at the CERN laboratory in Sweden worked out an even more convenient, 
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graphical and mouse-based system for sharing information.  Rather than type in cryptic text-
based commands to pull a file from a remote computer to another, a computer user could 
simply click on a word or picture and see the document directly on his or her computer 
screen.  Through programs called Web browsers, information could now be accessed directly 
in a cleanly formatted, readable form complete with color, pictures and even sound.  Thus the 
ultimate abstraction was born:  The World Wide Web, which is simply the Internet served up 
palatably in a multimedia format -- "pages" of information on computers all over the world, 
instantly accessible at your own desk, easily assimilated, and in an unending supply. 
 
Repercussions 

These technological advances have placed us in a world where we communicate 
more, but differently, with screens to separate us.  We are closer to those who used to be far 
away, but too often distant from those close to us, distracted by the world seen through our 
computer screens.  We seek uncensored expression and access to information across global 
channels, yet fear invasions of our privacy and assaults on our sensibilities.  We have more 
information at our fingertips than we know what to do with.  Our worlds are filled with labor-
saving devices and problem solving tools, and we seem to have less and less time to do the 
things we think expected of us.  Computers have made life easier, and they have made life 
harder.   

We might listen to the philosophical repercussions of computer science's great ideas 
as well.  Sometimes, the "negative" results have the greatest resonance.  Two brilliant minds 
independently formulate complete systems of abstract computation and learn, perhaps to their 
dismay, that their landmark results have been discovered elsewhere.  But the realization that 
machine computation can be carried out in vastly different forms to achieve precisely the 
same results is a remarkable discovery itself -- reminding us that important ideas may 
masquerade in different forms, yet be essentially unchanged.  Kurt Godel shows that 
sometimes we simply cannot prove everything we might like to prove within a closed, self-
contained system.  To see that some things are true, it may be necessary to step outside the 
system and use other strategies of logic or intuition.  There seems to be certain wisdom in 
that.  Turing shows that some problems are not solvable by abstract computation, and we see 
the ineffable and unsolvable of human experience mirrored in mathematical theory.  Perhaps 
most importantly, we learn from computer science that to see the essence of something, we 
must strip away the particulars and unimportant differences among things.  This is the heart 
of problem solving. 

The quest for a thinking machine has taken us from the limits of abstraction to 
marvels of invention.  It has resulted in a science that continues to change our world in ways 
we can hardly keep up with.  Computer science began with attempts to make machines that 
could think for us and like us, and it has ended up giving us far more to think about. 
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