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CHAPTER
No sound is dissonant which tells of life.

—Samuel Coleridge, This Lime-Tree Bower
My Prison

254

OBJECTIVES FOR CHAPTER 5

e Know the basic hardware and software components of a digital audio processing
environment.

¢ Know the common file types for digital audio and be able to choose an appropri-
ate file type and compression for audio files.

¢ Understand the difference between destructive and nondestructive audio editing.

Understand how normalization, compression, expansion, equalization, and reverb

are applied and what they do to digital audio.

Understand methods for audio restoration.

Understand how filters are applied and how they work mathematically.

Understand the concept and examples of time-based encoding for digital audio.

Understand the concept and examples of perceptual encoding for digital audio.

Understand the concept, implementation, and application of MPEG audio

compression.

5.1 TOOLS FOR DIGITAL AUDIO PROCESSING
5.1.1 Digital Audio Work Environments

In Chapter 4, we introduced basic concepts of digital audio representation. Now it’s time to
consider how you actually record and edit digital audio. Throughout this book, the goal is
to uncover the mathematics and algorithms that underlie work in digital media and to give
you knowledge that lasts longer than the short shelf-life of most editions of digital media
application programs. But because being able to do something with your knowledge is one
of the biggest motivators you can have, we chose the book’s topics based on real hands-on
work. So this chapter begins with an overview of the hardware and software tools for work-
ing with digital audio.

There are two main environments in which you might work with audio: during live per-
formance or in a sound recording studio. Let’s look at the equipment for live performances
first—the kind of equipment you would use as a sound engineer for a theater play, musical,
or concert—comparing an analog to a digital hardware setup.

Figure 5.1 is a diagram of the type of analog equipment you could use to manage sound
during a live performance or in studio recording. Central in this configuration is the mixer,
also called a mixing console or soundboard. A mixer is used to gather inputs from micro-
phones and instruments and dynamically adjust their amplitudes, equalize the frequency
components, compress the dynamic range, apply special effects, and route the processed
sound to outputs such as speakers. Each input to the mixer is designated as a channel, with
24 or more channels in larger mixers. Multiple channels can be gathered into a bus (a subsig-
nal that is the sum of the inputs to it), and the effects can be applied to the bus. The signal
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Figure 5.1 Analog sound equipment

can be split to multiple outputs so that speakers can be set up appropriately around an audi-
torium to create the desired sound environment.

Figure 5.2 shows what your live performance audio set-up would look like if you used
a digital mixer. Notice how much hardware is absorbed into the software of the digital
mixer. Inside the digital mixer is an analog-to-digital converter (ADC). As the signal enters
the mixer, it is immediately converted to digital form so that further processing can be done
on it in software. Before it is sent to the outputs, it is converted back to analog form with a
digital-to-analog converter (DAC).

Sound processing can also take place in settings other than live performances—for ex-
ample, in sound recording studios. Much of the equipment is the same, with the difference
that the sound is recorded, refined, processed with special effects, and finally compressed
and packaged for distribution. Much of this work can be done by means of a personal com-
puter equipped with the right sound card, microphones, and audio processing software.

In this book, we’re going to assume that you’re working in a mostly digital environment,
using your personal computer as the central component of your digital audio workstation
(DAW). The most basic element of your DAW is a sound card or external sound interface.
A sound card is a piece of hardware that performs the following basic functions:

* provides input jacks for microphones and external audio sources

* converts sound from analog to digital form as it is being recorded, using an ADC

* provides output jacks for headphones and external speakers

* converts sound from digital to analog form as it is being played, using a DAC

* synthesizes MIDI sound samples using either FM or wavetable synthesis, more often
the latter. (Most sound cards have this capability.)
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Figure 5.2 Digital sound equipment

If the sound card that comes with your computer doesn’t do a very good job with ADC,
DAC, or MIDI-handling, or if it doesn’t offer you the input/output interface you want, you
may want to buy a better internal sound card or even an external sound interface. An exter-
nal sound interface can offer extra input and output channels and connections, including
MIDI, and a choice of XLR, % inch TRS, or other audio jacks to connect the microphones
(Figure 5.5). To complete your DAW, you can add digital audio processing software, head-
phones, and good quality monitors. If you want to work with MIDI, you can also add hard-
ware or software MIDI samplers, synthesizers, and/or a controller.

Many computers have built-in microphones, but their quality isn’t always very good.
The two types of external microphones that you’re most likely to use are dynamic and ca-
pacitor mics. A dynamic mic (Figure 5.3) operates by means of an induction coil attached
to a diaphragm and placed in a magnetic field such that the coil moves in response to sound
pressure oscillations. Dynamic mics are versatile, sturdy, and fairly inexpensive, and
they’re good enough for most home or classroom recording studio situations.

A capacitor mic (also called a condenser mic) has a diaphragm and a backplate that to-
gether form the two plates of a capacitor (Figure 5.4). As the distance between the plates is
changed by vibration, the capacitance changes, and in turn, so does the voltage represent-
ing the sound wave. The material from which the plates are made is lighter and thus more
sensitive than the coil of a dynamic mic.

The main differences between dynamic and capacitor mics are these:

* A dynamic mic is less expensive than a capacitor mic.

* A capacitor mic requires an external power supply to charge the diaphragm and to
drive the preamp. A dynamic mic is sometimes more convenient because it doesn’t re-
quire an external power supply.
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Figure 5.3 Dynamic mic

Figure 5.4 Condenser mic

* A dynamic mic has an upper frequency limit of about 16 kHz, while the capacitor’s
frequency limit goes to 20 kHz and beyond. This difference is probably most notice-
able with regard to the upper harmonics of musical instruments.

* A dynamic mic is fine for loud instruments or reasonably close vocals. A capacitor
mic is more sensitive to soft or distant sounds.

* A capacitor mic is susceptible to damage from moisture condensation.

You can’t really say that one type of microphone is better than another. It depends on
what you’re recording, and it depends on the make and model of the microphone. Greater
sensitivity isn’t always a good thing, since you may be recording vocals at close range and
don’t want to pick up background noise; in this case a dynamic mic is preferable.

Microphones can also be classified according to the direction from which they receive
sound. The cardioid mic is most commonly used for voice recording, since its area of
sensitivity resembles a heart-shape around the front of the mic. An omnidirectional mic
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senses sound fairly equally in a circle around the mic. It can be used for general environ-
mental sounds. A bidirectional mic senses sound generally in a figure-eight area. The direc-
tion from which sounds are sensed depends in part on the frequency of the sound. In the
case of high frequencies, the directional response of a microphone depends in part on the
angle from which the sound arrives. Some high quality microphones have switches that
allow you to change their patterns of optimum reception. You can see the icon’s for differ-
ent reception patterns on the microphone in Figure 5.4.

Another property of microphones is their frequency response—the range of frequencies
that it picks up. The Shure SM50 microphone has a frequency response between 50 and
15000 Hz. A good condenser mic like the one pictured in Figure 5.4 could have a frequency
response of 20 to 20000 Hz.

You may want to buy monitors for the audio work you do on your computer. A monitor
is just another name for a speaker—but one that treats all frequency components equally.
Speakers can be engineered to favor some frequencies over others, but for your audio work
you want to hear the sound exactly as you create it, with no special coloring. For this rea-
son, you should pay particular attention to the frequency characteristics of the speakers or
monitors you use. It’s nice to have a good set of earphones as well, so that you can listen to
your audio without environmental background noise.

You’ll need a variety of cables and connectors to complete your digital audio worksta-
tion. Figure 5.5 shows commonly used audio connectors. To connect your computer to an
external audio or hard disk drive, you’ll probably use Firewire or USB. Firewire provides a
high speed data connection, and thus it is very popular for audio, video, and hard disk drive
connections. USB and USB2 are used for the same purpose. USB connections can be con-
venient in that an external device may be able to draw its power from the USB connection
and therefore doesn’t require a power cord. Firewire is advertised as having a data rate of
400 Mb/s and USB2 a data rate of 480 Mb/s. However, USB2 goes through the CPU to de-
termine the direction of data flow, and Firewire does not. Thus, Firewire actually turns out
to be faster, not stealing any CPU time that could be used for audio processing. Firewire
connections come in two types—six pin or four pin. You need to be sure to have the right
type for your equipment. You might need a Firewire cable that is six pin on both ends, six
pin on one end and four on the other end, and so forth.

If you’re connecting a digital audio recorder to your computer or external sound inter-
face, you use an S/PDIF connection, which stands for Sony Phillips Digital Interface.
S/PDIF is made to transmit audio data that is already digitized, so it doesn’t have to go
through an analog-to-digital converter in the sound interface.

The remaining connectors discussed in this section are analog, which link a microphone—
which is an analog device—to an analog-to-digital converter that resides in your com-
puter’s sound card or in an external sound interface. The connector type that this entails de-
pends on the type of microphone.

Inexpensive consumer microphones generally have an %" stereo miniplug on the end
that go directly to your computer’s internal sound card. This type of microphone doesn’t
provide professional quality recording.

TRS and TR % inch connectors are used with a wide variety of consumer and profes-
sional equipment such as microphones amplifiers, guitars, headphones, and speakers. The
% connectors can be balanced or unbalanced (explained below).

To use a good quality microphone, you’ll need an XLR cable. External sound interfaces
generally have XLR inputs. The sound interface provides a female three pin connection
port and the microphone has a male three pin connection. The XLR cable that connects the
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Figure 5.5 Types of audio connectors

two is female on the microphone end and male on the sound interface end. XLR connectors
provide a high quality, balanced, low impedance signal.

If your sound card has % inch inputs and you want to connect a microphone that uses
XLR connections, you can get an XLR to /% inch adaptor. However, the transformation of
the signal that is done via the adaptor sacrifices some audio quality in your recording.

RCA connectors have been around for a long time as part of consumer audio and video
equipment. They often are used with devices like external tape decks or video cameras. You
have probably seen them in color coded three-jack connections for where the yellow plug
is for composite video, white is for the left or mono audio connection, and red is for the
right audio connection. (See Figure 6.11.) RCA connectors transmit an unbalanced signal.

As you consider the types of connections you need, you’ll encounter the terms imped-
ance and balance. Impedance (abbreviated Z) is the measure of the total opposition to cur-
rent flow in an alternating current circuit. Measured in ohms, impedance is the sum of two
components, resistance (R) and reactance (X). Ohms is abbreviated €, 1,000 ohms is ab-
breviated kQ, and 1,000,000 ohms is abbreviated MQ.

The source of an audio signal—like a microphone or electric guitar—is called the source
or output. The place where you plug this source into a sound card, external sound interface,
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or mixer is called the load or input. The significance of impedance is that it affects what
types of outputs should be plugged into what kinds of inputs.

A microphone up to about 600 Q is low impedance, between 600 and 10,000 Q is
medium impedance, and 10,000 Q or more is high impedance. A high impedance mic or
instrument generally outputs a higher amplitude signal, measured in voltage, than a lower
impedance one. This does not imply that high impedance is better than low impedance.
Most good mics are low impedance, particularly those with XLLR connectors.

It’s not good to connect a higher impedance output to a lower impedance input because
the frequencies that are recorded may be distorted. An electric guitar generally is a high
impedance source. It often has a % inch TRS output connection like the one shown in
Figure 5.5. You shouldn’t connect a high impedance electric guitar to a low impedance
input jack. Some external audio interfaces provide % inch inputs that are designed to re-
ceive an electric guitar for direct recording of its output. You can check the specifications
of your sound interface to see if an input is provided with correct impedance for an electric
guitar. (USB outputs also exist for electric guitars.)

Another thing you should know about high impedance output that it isn’t good when
you have to connect the output to the input by means of a long cable. With a long cable,
there’s more chance that high frequencies will be lost in the audio signal. This is because
high frequencies are affected more by reactance. Also, a longer cable provides more chance
for the high impedance output to attract electrical interference on its way to the input. This
can add noise to the recording in the form of a hum. A low-impedance mic can be used with
hundreds of feet of cable without picking up hum or losing high frequencies. A medium-
impedance mic cable is limited to about 40 feet, and a high-impedance mic is limited to
about ten feet. The extent to which high frequencies are lost depends also on the capaci-
tance of the cable.

The other consideration is whether a connection transmits a balanced or unbalanced sig-
nal. Balanced signals have two signal conductors and one shield. The two signal conduc-
tors are identical except that they are 180 degrees out of phase with each other. (Note that
adding two sine waves that are 180 degrees out of phase yields 0 amplitude at all points.)
If noise is added to the line, it is identical in both of the signals. Thus, adding the two sig-
nals cancels the original signal and yields two times the noise. This identifies the frequency
components of the noise in the signal, which can then be eliminated. The significance of
this is that a balanced connection generally has less noise than an unbalanced one.
Unbalanced signals use only two signal conductors—a center conductor and a grounded
shield. The shield is intended to protect the center signal from electrical interference, but it
doesn’t block all the interference. When interference does get through, it results in a hum
or buzz added to an audio recording. This is more likely to happen when the cable between
the output and input is long.

The bottom line is that balanced low impedance microphones (e.g., those with XLR
connections) provide a superior audio signal in recording.

5.1.2 Digital Audio Processing Software

Digital audio processing software and MIDI controllers give you an interface to your sound
card, allowing you to record, edit, compress, and save audio and MIDI files. As of the writing
of this chapter, Digidesign Pro Tools (Mac or Windows), Adobe Audition (Windows), Apple
Logic (Mac), Sony Sound Forge (Windows), and Nuendo (Mac or Windows) are among the
most popular commercial audio application programs. Cakewalk Music Creator and
Cakewalk Sonar are combined audio/MIDI processing packages. Propellerhead Reason (Mac
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or Windows) is a sophisticated audio/MIDI software package that provides a sequencer, drum
machines, and a wide variety of software synthesizers that are visually and functionally mod-
eled after analogous hardware. Reason can be used as a stand-alone or as a plug-in to other
audio processing software. Acid Pro is a loop-based music creation tool. Max/MSP (Mac and
Windows), developed by Cycling ’74, is an interesting development environment for interac-
tive music and audio processing. Many freeware, shareware, and commercial digital audio
tools are available for Linux and Unix, also, including (at the time of this writing) DAP,
MixViews, ReZound, Slab, JoKosher, KWave, Brahms, Jazz++, TiMidity ++, Playmidi,
BladeEnc, and aRts. Audacity is an open source program that runs under Mac, Windows, and
Linux operating systems.

Features that you generally find in digital audio processing software include the
following:

* the ability to import and save audio files in a variety of formats

* an interface (called transport controls) for recording and playing sound

» a waveform view that allows you to edit the wave, often down to the sample level

* multitrack editors

* audio restoration tools to remove hisses, clicks, pops, and background noise

* the ability to take input from or direct output to multiple channels

* special effects such as reverb, panning, or flange

* controls for equalizing and adjusting volume and dynamic range

* frequency filters

* the ability to handle the MIDI format along with digital audio and to integrate the two
types of data into one audio file

* the ability to record samples and add to the bank of MIDI patches

* compression codecs

Not all audio application programs include all the features listed above. In some cases,
you have to install plug-ins to get all the functionality you want. Three common plug-in
formats are VST (Virtual Studio Technology), TDM (time division multiplexing), DirectX,
and Audio Units by Core Audio. Plug-ins provide fine-tuned effects such as dynamic com-
pression, equalization, reverb, and delay (explained later in this chapter).

In digital audio processing programs, you often have a choice between working in a
waveform view or a multitrack view. The waveform view gives you a graphical picture of
sound waves like we have described in Chapter 4. You can view and edit a sound wave
down to the level of individual sample values, and for this reason the waveform view is
sometimes called the sample editor. The waveform view is where you apply effects and
processes that cannot be done in real-time, primarily because these processes require that
the whole audio file be examined before new values can be computed. When such
processes are executed, they permanently alter the sample values. In contrast, effects that
can be applied in real-time do not alter sample values.

The waveform view of an audio file displays time across the horizontal axis and ampli-
tude up the vertical axis. The standard representation of time for digital audio and video is
SMPTE, which stands for Society of Motion Picture and Television Engineers. SMPTE di-
vides the timeline into units of hours, minutes, seconds, and frames. The unit of a frame is
derived from digital audio’s association with video. A video file is divided into a sequence
of individual still images called frames. One standard frame rate is 30 frames per second,
but this varies according to the type of video. A position within an audio file can be denoted
as h:m:s:f. For example, 0:10:42: 14 would be 10 minutes, 42 seconds, and 14 frames
from the beginning of the audio file. Audio editing programs allow you to slide a “Current
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Position Cursor” to any moment in the audio file, or alternatively you can type in the posi-
tion as h.:m:s:f. Other time formats are also possible. For example, some audio editors
allow you to look at time in terms of samples, bars and beats, or decimal seconds.

The multitrack view allows you to record different sounds, musical instruments, or voices
on separate tracks so that you can work with these units independently, modifying frequency
or dynamic range, applying reverb or phase shifts, whatever you want for your artistic pur-
poses. A track is a sequence of audio samples that can be played and edited as a separate
unit. Often, different tracks are associated with different instruments or voices. You can
record one instrument on one track and then you can record a second instrument or voice on
another. If you play the first track while recording the second, you can easily synchronize the
two. With the right digital processing software and a good computer with plenty of RAM
and external storage, you can have your own sound studio. If you’re also a musician, you
can do all of the musical parts yourself, recording one track after another. In the end, you’ll
probably want to mix down the tracks, collapsing them all into one unit. This is very much
like flattening the layers of a digital image. Once you have done this, you can’t apply effects
to the separate parts (but if you’re smart, you’ll have kept a copy of the multitrack version
just in case). The mixed-down file might then go through the mastering process. Mastering
puts the final touches on the audio and prepares it for distribution. For example, if the audio
file is one musical piece to be put on a CD with others, mastering involves sequencing the
pieces, normalizing their volumes with respect to one another so one doesn’t sound much
louder than another, altering their dynamic ranges for artistic reasons, and so forth.

A channel is different from a track. A channel corresponds to a stream of audio data,
both input and output. Recording on only one channel is called monophonic or simply
mono. Two channels are stereo. When you record in stereo, the recording picks up sound
from slightly different directions. When the sound is played back, the intention is to send
different channels out through different speakers so that the listener can hear a separation
of the sound. This gives the sound more dimension, as if it comes from different places in
the room. Stereo recording used to be the norm in music, but with the proliferation of DVD
audio formats and the advent of home theaters that imitate the sound environments of
movie theatres, the popularity of multichannel audio is growing. A 5.1 multichannel setup
has five main channels: front center, front right, front left, rear right, rear left, and a low fre-
quency extension channel (LFE). LFE, often called a subwoofer, has frequencies from 10
to 120 Hz. A 6.1 multichannel setup has a back center channel as well.

5.1.3 Destructive Vs. Nondestructive Editing

Changes made to digital audio files by means of audio processing software are generally
handled in one of two ways: by means of destructive editing or nondestructive editing.
Think about what happens when you work on an audio file that you previously recorded
and saved in permanent storage—say, on your hard disk. Audio files can be very large, so
the whole file will not be held in RAM and operated on there as you edit it. The audio pro-
cessing program will have to record your changes as you work by writing to a file on the
disk drive. The question is, will it change your original audio file even before you do a
“Save” operation? In immediately destructive editing, this is exactly what would happen. If
you added reverb to your sound, a destructive editor would immediately apply the reverb
operation to the original file on disk, so you couldn’t get the original file back.
Fortunately, audio processing programs generally don’t handle editing in this manner.
Instead, they create a temporary (temp) file on the hard disk and write any changes you
make to this temporary copy of the audio file. If you never save the edited version, the temp
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file goes away. If you do save the edited audio, the previous version is overwritten with the
temp file.

If most edits are not immediately destructive, then what’s the distinction between de-
structive and non-destructive edits? In most audio processing programs, destructive edits
are handled in the manner described in the previous paragraph. If your editing environment
allows “undos”—and most of them do—then your operations will be saved in a series of
temp files, and you can revert back to previous states by undoing instructions. The editing
operations don’t become permanent until you save the audio file.

Nondestructive edits are handled by means of additional instructions that are added to
the audio file. For example, you could indicate that you want a volume change in a portion
of the audio. Instead of altering the amplitudes of the samples, the editing program would
save an instruction indicating the level, beginning point, and ending point of the volume
change. The assumption here is that you would be saving the audio file in a file format that
accommodates these extra instructions—for example, the proprietary file format of the
audio processing program. If you eventually decide to mix your audio down to another
standard file format like WAV, at that point the changes become destructive in that the sam-
ple values are changed.

Sometimes a distinction is made between the waveform view and the multitrack view,
the former being an environment for destructive edits and the latter for nondestructive. You
should consult your application program’s Help so you know how editing is handled in
your working environment. You’ll also want to set your maximum number of “undos.” It’s
nice to be able to undo a lot of operations, but you’ll need sufficient disk space for all the
temp files.

Real-time processing is always nondestructive. It’s amazing to discover just how much
real-time processing can go on while an audio file is playing or being mixed in live per-
formance. It’s possible to equalize frequencies, compress dynamic range, add reverb, or
even combine these processing algorithms. The processing can happen so quickly that the
delay isn’t noticed. However, all systems have their limit for real-time processing, and you
should be aware of these limits. In mixing of live performances, there are also times when
you have to pay attention to the delay inevitably introduced in any kind of digital audio pro-
cessing. ADC and DAC themselves introduce some delay right off the top, to which you
have to add the delay of special effects.

5.1.4 Digital Audio File Types

If you have worked at all with digital audio, you’ve seen that audio files are saved in a
variety of formats, as indicated by the many file extensions: .wav, .au, .mp3, .aac, and so
forth. How do you know which is right for your application? What distinguishes one file
type from another?

File formats differ in how they answer the following questions:

* How are the samples encoded?
o Using linear quantization?
o Using logarithmic quantization?
o Are sample values signed or unsigned?
* What is the format of the data?
o Is there a header?
o Are bytes stored in little-endian or big-endian order?
o Are channels interleaved?
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* What type of information is stored in the file?
o Are there constraints on the sampling rate and/or bit depth?
o Are there constraints on the number of channels?
o Is extra information allowed, like timestamps or loop points?
* Is the file compressed?
o Using a lossy procedure?
o Using a lossless procedure?
¢ Is the format “open” or proprietary?
o Is the code open source?
o Does the format follow a widely accepted standard such as IMA or IFF?

Let’s consider uncompressed files first. An audio file format that is described as linear
PCM stores a sequence of audio samples encoded in linearly spaced quantization intervals,
which means that each interval is the same size. (See Chapter 1.) An alternative is to use
logarithmic quantization, where low amplitude samples are represented with more preci-
sion than are high amplitude samples. In other words, quantization intervals get progres-
sively larger as the amplitude of the audio samples get larger. The advantage to this method
is that you can make finer distinctions between amplitude levels at lower amplitudes, where
the human ear is more sensitive to differences. A-law and p-law encoding are examples of
logarithmic quantization methods. The file extensions .u, .al, .I8, and .16 can be recog-
nized, respectively, as 8-bit u-law, 8-bit A-law, 8-bit linear PCM, and 16-bit linear PCM,
all assumed to be at a sampling rate of 8000 Hz.

Raw files have nothing but sample values in them. There’s no header to indicate the
sampling rate, sample size, or type of encoding. If you try to open a .raw file in an audio
processing program, you’ll be asked to provide the necessary information.

Sometimes the file extension of an audio file uniquely identifies the file type, but this
isn’t always the case. Often it’s necessary for the audio file player or decoder to read the
header of the file to identify the file type. For example, the .wav extension is used for files
in a variety of formats: uncompressed, A-law encoded, u-law encoded, ADPCM encoded,
or compressed with any codec. The header of the file specifies exactly which format is
being used. WAV files are the standard audio format of Microsoft and IBM.

To facilitate file exchange, a standard format called IFF—the Interchange Format File—
has been devised. IFF files are divided into chunks, each with its own header and data. Files
with the .wav or .aif (Apple) extension are versions of the IFF format. They differ in that
Microsoft/IBM use little-endian byte order while Macintosh uses big-endian. In little-
endian byte ordering, the least significant byte comes first, and in big-endian the most sig-
nificant byte comes first.

It is sometimes difficult to separate audio file formats from codecs. Codecs are
compression/decompression algorithms that can be applied within a variety of file for-
mats. For example, the fact that a file has the .wav file extension says nothing about
whether or not the file is compressed. The file could be compressed with any one of a
number of codecs, as specified in the file’s header. However, if a file has the file exten-
sion .mp3 or .aac, then you know that it has been compressed with the MP3 or AAC
codec, respectively. Some codecs are proprietary (e.g., WMA) and some are open source
(e.g., FLAC and Ogg Vorbis). Some provide lossy compression, some lossless.

Representative audio file formats and codecs are listed in Table 5.1. Your choice of audio
file format depends on a number of factors. On what platforms do you expect to deliver
the audio? What sampling rate and bit depth are appropriate to the type of audio you’re
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1. RSN B Representative Audio File Formats

File

Extension File Type or Codec Characteristics

.aac Advanced Audio Coding Lossy compression method designed as an improvement of .mp3 files;
used by iPods, cell phones, and portable PlayStations.

.aif Audio Interchange File Uncompressed PCM format supporting mono or stereo, 16-bit or 8-bit,

Format, Apple’s standard and a wide range of sample rates; big-endian byte order.
wave format

.au NeXT/Sun (Java) Can be uncompressed or can use variants of CCITT w-law, A-law,
or G.721; supports mono or stereo, 16-bit or 8-bit, and a range of
sampling rates when uncompressed; often used for distribution on
the Internet and for inclusion in Java applications and applets.

.flac Free Lossless Audio A free codec providing lossless compression at a ratio of about 1.5: 1

Codec, Xiph.Org or 2:1; popular for lossless compression of web-based audio;
Foundation competitive with .fta.

.mp3 MPEG-1 Layer 3 audio High compression rate with good quality; dominant web-based
format for many years.

.099 0gg Vorbis, Xiph.Org Open, free codec; high compression rate with high fidelity;

Foundation competitive with .mp3.

raw Raw files Raw sample values with no header; when a raw file is opened, you're
asked for the sampling rate, resolution, and number of channels.

.rm RealMedia Supports streamed audio, which allows you to begin listening to the
audio without having to download the entire file first.

ta True Audio A free codec providing lossless compression at a ratio of about 1.5: 1
or 2:1; popular for lossless compression of web-based audio;
competitive with .flac.

A-law or u- CCITT standard G.711 8-bit per sample files created from 16-bit per sample using A-law

law .wav standard formats or u-law encoding, achieving the equivalent of about 13-bit
dynamic range (about 78 dB).

DVI/IMA .wav International Multimedia Uses a different (faster) method than Microsoft ADPCM; a good

Association version of alternative to MPEG with fast decoding and good quality of
ADPCM .wav format with compressed audio.
ADPCM compression

Microsoft Microsoft Uses ADPCM; yields 4-bit per channel compressed data for 4 : 1

ADPCM .wav compression ratio.

Windows Microsoft Standard Windows .wav format for uncompressed PCM audio;

PCM .wav supports both mono and stereo at a variety of bit depths and sample
rates; follows RIFF (Resource Information File Format) specification,
allowing for extra user information to be saved with the file.

.wma or .asf Microsoft Windows Microsoft proprietary codec; allows you to choose quality settings,

Media (audio) including constant bit rate (CBR) vs. variable bit rate (VBR) and
lossy vs. lossless compression; competitive with .aac; uses .asffile
extension if encapsulated in Advanced Systems Format; supports
streaming audio.




MO5_BURG5802 01 SE C05.QXD 7/2/08 12:29 PM Page 266$

266 Chapter 5 Digital Audio Processing

recording? Not all file types offer all the choices you might want in sampling rate and bit
depth. Remember to keep the file in an uncompressed form while you’re working on it in
order to maintain the greatest fidelity possible. But if file size is ultimately an issue, you
need to consider what codec to use for the audio’s final deliverable form. Will your user have
the needed codec for decompression? Is lossy compression sufficient for the desired quality,
or do you want lossless compression? All these decisions should become clearer as you
work more with audio files and read more about audio file compression later in this chapter.

5.2 DYNAMICS PROCESSING

Dynamics processing is the process of adjusting the dynamic range of an audio selection,
either to reduce or to increase the difference between the loudest and softest passages. An
increase in amplitude is called gain or boost. A decrease in amplitude is called attenuation
or, informally, a cut. Dynamics processing can be done at different stages while audio is
being prepared, and by a variety of methods. The maximum amplitude can be limited with
a hardware device during initial recording, gain can be adjusted manually in real-time with
analog dials, and hardware compressors and expanders can be applied after recording. In
music production, vocals and instruments can be recorded at different times, each on its
own track, and each track can be adjusted dynamically in real-time or after recording.
When the tracks are mixed down to a single track, the dynamics of the mix can be adjusted
again. Finally, in the mastering process, dynamic range can be adjusted for the purpose of
including multiple tracks on a CD and giving the tracks a consistent sound. In summary,
audio can be manipulated through hardware or software; the hardware can be analog or
digital; the audio can be processed in segments or holistically; and processing can happen
in real-time or after recording.

The information in this section is based on digital dynamics pro-
cessing tools: hard limiting, normalization, compression, and ex-
pansion. These tools alter the amplitude of an audio signal and
therefore change its dynamics—the difference between the softest
and the loudest part of the signal. Limiting sets a maximum ampli-
tude. Normalization finds the maximum amplitude sample in the
signal, boosts it to the maximum possible amplitude (or an ampli-
tude chosen by the user), and boosts all other amplitudes propor-
tionately. Dynamic compression decreases the dynamic range of a

[AS|DE: You should be careful to distinguish\

among the following: possible dynamic range
as a function of bit depth in digital audio; actual
dynamic range of a particular piece of audio;
and perceived loudness of a piece. The possible
dynamic range for a piece of digital audio is
determined by the bit depth in which that piece
is encoded. In Chapters 1 and 4, we derived a
formula that tells us that the possible dynamic

range is equal to approximately 6 * n dB where
n is the number of bits per sample. For CD
quality audio, which uses 16-bit samples, this
would be 96 dB. However, a given piece of
music doesn’t necessarily use that full possible
dynamic range. The dynamic range of a piece
is the difference between its highest amplitude
and lowest amplitude sample. The overall
perceived loudness of a piece, which is a sub-
jective measurement, is related to the average
RMS of the piece. The higher the average
RMS, the louder a piece seems to the human
ear. (RMS—root-mean-square—is explained

in Chapter 4.)

J

selection. (This type of compression has nothing to do with file
size.) Dynamic expansion increases it.

The purpose of adjusting dynamic range is to improve the tex-
ture or balance of sound. The texture of music arises in part from
its differing amplitude levels. Instruments and voices have their
characteristic amplitude or dynamic range. The difference be-
tween peak level amplitude and average amplitude of the human
voice, for example, is about 10 dB. In a musical composition, in-
struments and voices can vary in amplitude over time—a flute is
played softly in the background, vocals emerge at medium ampli-
tude, and a drum is suddenly struck at high amplitude. Classical
music typically has a wide dynamic range. Sections of low ampli-
tude are contrasted with impressive high amplitude sections full
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of instruments and percussion. You probably are familiar with Beethoven’s Fifth Sym-
phony. Think of the contrast between the first eight notes and what follows:

BUM BUM BUM BAH!
BUM BUM BUM BAH!
Then softer . . .

In contrast, “elevator music” or “Muzak” is intentionally produced with a small dynamic
range. Its purpose is to lie in the background, pleasantly but almost imperceptibly.

Musicians and music editors have words to describe the character of different pieces that
arise from their variance in dynamic range. A piece can sound “punchy,” “wimpy,”
“smooth,” “bouncy,” “hot,” or “crunchy,” for example. Audio engineers train their ears to
hear subtle nuances in sound and to use their dynamics processing tools to create the effects
they want.

Deciding when and how much to compress or expand dynamic range is as much art as
science. Compressing the dynamic range is desirable for some types of sound and listening
environments and not for others. It’s generally a good thing to compress the dynamic range
of music intended for radio. You can understand why if you think about the way radio
sounds in a car, which is where radio music is often heard. With the background noise of
your tires humming on the highway, you don’t want music that has big differences between
the loudest and softest parts. Otherwise, the soft parts will be drowned out by the back-
ground noise. For this reason, radio music is dynamically compressed, and then the ampli-
tude is raised overall. The result is that the sound has a higher average RMS, and overall it
is perceived to be louder.

There’s a price to be paid for dynamic compression. Some sounds—Ilike percussion in-
struments or the beginning notes of vocal music—have a fast attack time. The attack time
of a sound is the time it takes for the sound to change amplitude. With a fast attack time,
the sound reaches high amplitude in a sudden burst, and then it may drop off quickly. Fast-
attack percussion sounds like drums or cymbals are called transients. Increasing the
perceived loudness of a piece by compressing the dynamic range and then increasing the
overall amplitude can leave little headroom—room for transients to stand out with higher
amplitude. The entire piece of music may sound louder, but it can lose much of its texture
and musicality. Transients give brightness or punchiness to sound, and suppressing them
too much can make music sound dull and flat. Allowing the transients to be sufficiently
loud without compromising the overall perceived loudness and dynamic range of a piece is
one of the challenges of dynamics processing.

While dynamic compression is more common than expansion, expansion has its uses
also. Expansion allows more of the potential dynamic range—the range made possible by
the bit depth of the audio file—to be used. This can brighten a music selection.

Using downward expansion, it’s possible to lower the amplitude of signals below the
point where they can be heard. The point below which a digital audio signal is no longer
audible is called the noise floor. Say that your audio processing software represents ampli-
tude in dBFS—decibels full scale—where the maximum amplitude of a sample is 0 and the
minimum possible amplitude—a function of bit depth—is somewhere between 0 and —o0.
For 16-bit audio, the minimum possible amplitude is approximately —96 dBFS. Ideally,
this is the noise floor, but in most recording situations there is a certain amount of low am-
plitude background noise that masks low amplitude sounds. The maximum amplitude of
the background noise is the actual noise floor. If you apply downward expansion to an
audio selection and you lower some of your audio below the noise floor, you’ve effectively
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Upward Downward
compression expansion

Figure 5.6 Types of dynamic range compression and expansion

lost it. (On the other hand, you could get rid of the noise within the music piece itself by
downward expansion, moving the background below the —96 dB noise floor).

To understand how dynamic processing works, let’s look more closely at the tools and
the mathematics underlying dynamics processing, including hard limiting, normalization,
compression, and expansion.

We’ve talked mostly about dynamic range compression in the examples above, but there
are four ways to change dynamic range: downward compression, upward compression,
downward expansion, and upward expansion, as illustrated in Figure 5.6. The two most
commonly applied processes are downward compression and downward expansion. You
have to look at your hardware or software tool to see what types of dynamics processing
it can do. Some tools allow you to use these four types of compression and expansion in
various combinations with each other.

* Downward compression lowers the amplitude of signals that are above a designated
level, without changing the amplitude of signals below the designated level. It reduces
the dynamic range.

» Upward compression raises the amplitude of signals that are below a designated level
without altering the amplitude of signals above the designated level. It reduces the
dynamic range.

» Upward expansion raises the amplitude of signals that are above a designated level,
without changing the amplitude of signals below that level. It increases the dynamic
range.

* Downward expansion lowers the amplitude of signals that are below a designated level
without changing the amplitude of signals above this level. It increases the dynamic
range.

Audio limiting, as the name implies, limits the amplitude of an audio signal to a desig-
nated level. Imagine how this might be done in real-time during recording. If hard limiting
is applied, the recording system does not allow sound to be recorded above a given ampli-
tude. Samples above the limit are clipped. Clipping cuts amplitudes of samples to a given
maximum and/or minimum level. If soft limiting is applied, then audio signals above the
designated amplitude are recorded at lower amplitude. Both hard and soft limiting cause
some distortion of the waveform.

Normalization is a process which raises the amplitude of audio signal values and thus
the perceived loudness of an audio selection. Because normalization operates on an entire
audio signal, it has to be applied after the audio has been recorded.

o



MO5_BURG5802 01 SE C05.QXD 7/2/08 12:29 PM Page 269$

5.2 Dynamics Processing 269

The normalization algorithm proceeds as follows:

¢ find the highest amplitude sample in the audio selection

* determine the gain needed in the amplitude to raise the highest amplitude to maxi-
mum amplitude (0 dBFS by default, or some limit set by the user)

* raise all samples in the selection by this amount

A variation of this algorithm is to normalize the RMS amplitude to a decibel level specified
by the user. RMS can give a better measure of the perceived loudness of the audio. In
digital audio processing software, predefined settings are sometimes offered with descrip-
tions that are intuitively understandable—for example, “Normalize RMS to —10 dB
(speech).”

Often, normalization is used to increase the perceived loudness of a piece after the dy-
namic range of the piece has been compressed, as described above in the processing or
radio music. Normalization can also be applied to a group of audio selections. For exam-
ple, the different tracks on a CD can be normalized so that they are at basically the same
amplitude level. This is part of the mastering process.

Compression and expansion can be represented mathematically by means of a transfer Supplements on
function and graphically by means of the corresponding transfer curve. Digital audio pro- dynamics
cessing programs sometimes give you this graphical view with which you can specify the processing:
type of compression or expansion you wish to apply. Alternatively, you may be able to type
in values that indicate the compression or expansion ratio. The transfer function maps an
input amplitude level to the amplitude level that results from compression or expansion. If
you apply no compression or expansion to an audio file, the transfer function graphs as a
straight line at a 45° angle, as shown in Figure 5.7. If you choose to raise the amplitude of
the entire audio piece by a constant amount, this can also be represented by a straight line

of slope 1, but the line crosses the vertical axis at the decibel amount by which all samples ' ’4\\
are raised. For example, the two transfer functions in Figure 5.7 show a 5 dB increase and o
a 5 dB decrease in the amplitude of the entire audio piece.
worksheet
S S
=) =)
S S
\O \O
5 > T -
-96 dB 0dB -96 dB 0dB

Figure 5.7 Linear transfer functions for 5 dB gain and 5 dB loss—no compression
or expansion

To apply downward compression, you designate a threshold—that is, an amplitude

above which you want the amplitude of the audio signal to be lowered. (For upward com-
pression, amplitudes below the threshold would be raised.) Figure 5.8 shows the transfer
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Figure 5.8 Graph of transfer function for downward
compression (from Audition)

Figure 5.9 Downward compression, traditional view
(from Audition)

function graph corresponding to downward compression where the rate of change of sam-
ple values higher than —40 dB is lowered by a 2: 1 ratio. Figure 5.9 shows the traditional
view. Compression above the threshold is typically represented as a ratio a : b. If you indi-
cate that you want a compression ratio of a : b, then you’re saying that, above the threshold,
for each a decibels that the signal increases in amplitude, you want it to increase only by b
decibels. For example, if you specify a dynamic range compression ratio of 2: 1 above the
threshold, then if the amplitude raises by 1 dB from one sample to the next, it will actually
go up (after compression) by only 0.5 dB. Notice that, beginning at an input of —40 dB and
continuing to the end, the slope of the line is b/a = 1/2.

Often, a gain makeup is applied after downward compression. You can see in Figure 5.9
that there is a place to set Output Gain. The Output Gain is set to O in the figure. If you set
the output gain to a value g dB greater than 0, this means that after the audio selection is
compressed, the amplitudes of all samples are increased by g dB. Gain makeup can also be
done by means of normalization, as described above. The result is to increase the perceived
loudness of the entire piece. However, if the dynamic range has been decreased, the per-
ceived difference between the loud and soft parts is reduced.

Upward compression is accomplished by indicating that you want compression of sam-
ple values that are below a certain threshold, or decibel limit. For example, Figure 5.10
shows how you indicate that you want samples that are below —30 dB to be compressed by
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Figure 5.10 Upward compression by 2: 1 below Figure 5.11 Downward and upward compression
—30 dB (from Audition) (from Audition)

aratio of 2: 1. If you look at the graph, you can see that this means that sample values will
get larger. For example, a sample value of —80 dB becomes —54 dB after compression.
This may seem counterintuitive at first, since you may think of compressing something as
making it smaller. But remember that it is the dynamic range, not the sample values them-
selves, that you are compressing. If you want to compress the dynamic range by changing
values that are below a certain threshold, then you have to make them larger, moving them
toward the higher amplitude values at the top. This is what is meant by upward compression.

With some tools, it’s possible to achieve both downward and upward compression with
one operation. Figure 5.11 shows the graph for downward compression above —20 dB, no
compression between —20 and —60 dB, and upward compression below —60 dB. To this,
an output gain of 4 dB is added. An audio file before and after such dynamics processing is
shown in Figure 5.12. The dynamic range has been reduced by both downward and upward
compression.

Sometimes, normalization is used after dynamic range compression. If we downward
and upward compress the same audio file and follow this with normalization, we get the
audio file pictured in Figure 5.13.

It is also possible to compress the dynamic range at both ends, by making high ampli-
tudes lower and low amplitudes higher. Following is an example of expanding the dynamic
range by “squashing” at both the low and high amplitudes. The compression is performed
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(a) Uncompressed audio (b) Compressed audio
Figure 5.12 Audio file before and after dynamics processing

b el
y o T

Lkl
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Figure 5.13 Downward and upward compression followed by normalization

on an audio file that has three single-frequency tones at 440 Hz. The amplitude of the first is
—5 dB, the second is —3 dB, and the third is —12 dB. Values above —4 dB are made smaller
(downward compression). Values below —10 dB are made larger (upward compression). The
settings are given in Figure 5.15. The audio file before and after compression is shown in
Figure 5.14a and Figure 5.14b. (The three sine waves appear as solid blocks because the
view is too far out to show detail. You can see only the amplitudes of the three waves.)
There’s one more part of the compression and expansion process to consider. The attack
of a dynamics processor is defined as the time between the appearance of the first sample
value beyond the threshold and the full change in amplitude of samples beyond the threshold.
Thus, attack relates to how quickly the dynamics processor initiates the compression or

(a) Before compression (b) After compression
Figure 5.14 Audio file (three consecutive sine waves
of different amplitudes) before and after dynamic
compression
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¥ST Plugin - Dynamics Processing

Traditional

Figure 5.15 Compression of dynamic range at both
high and low amplitudes (from Audition)

expansion. When you downward compress the dynamic range, a slower attack time can
sometimes be more gradual and natural, preserving transients by not immediately lowering
amplitude when the amplitude suddenly, but perhaps only momentarily, goes above the
threshold. The release is the time between the appearance of the first sample that is not be-
yond the threshold (before processing) and the cessation of compression or expansion.

5.3 AUDIO RESTORATION

Background noise arises from a variety of sources during audio recording: the whir of a
spinning disk drive, noises in the environment like air conditioners or wind, inadvertent
taps on the microphone, tape hiss (if the audio is being copied from an analog tape), or a
puff of air when a “p” is spoken too close to the mic, for example. Three basic types of
audio restoration are used to alleviate these problems: noise gating, noise reduction, and
click and pop removal.

The operation of a noise gate is very simple. (See Figure 5.16.) A noise gate serves as
a block to signals below a given amplitude threshold. When samples fall below the thres-

hold, the gate closes and the samples are not passed through. When the samples rise above
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Figure 5.16 Interface to a noise gate (from Logic Pro)

the threshold, the gate opens. Some noise gates allow you to indicate the reduction level,
which tells the amplitude to which you want the below-threshold samples to be reduced.
Often, reduction is set at the maximum value, completely eliminating the signals below
the threshold. The attack time indicates how quickly you want the gate to open when the
signal goes above the threshold. If you want to preserve transients like sudden drum beats,
then you would want the attack to be short so that the gate opens quickly for these. A
lookahead feature allows the noise gater to look ahead to anticipate a sudden rise in am-
plitude and open the gate shortly before the rise occurs. Some instruments like strings fade
in slowly, and a short attack time doesn’t work well in this case. If the attack time is too
short, then at the moment the strings go above the threshold, the signal amplitude will rise
suddenly. The release time indicates how quickly you want the gate to close when the sig-
nal goes below the threshold. If a musical piece fades gradually, then you want a long re-
lease time to model the release of the instruments. Otherwise, the amplitude of the signal
will drop suddenly, ruining the decrescendo. Some noise gaters also have a hold control,
indicating the minimum amount of time that the gate must stay open. A hysteresis control
may be available to handle cases where the audio signal hovers around the threshold. If the
signal keeps moving back and forth around the threshold, the gate will open and close
continuously, creating a kind of chatter, as it is called by audio engineers. The hysteresis
control indicates the difference between the value that caused the gate to open (call it n)
and the value that will cause it to close again (call it m). If n — m is large enough to con-
tain the fluctuating signal, the noise gate won’t cause chatter.

Noise reduction tools can eliminate noise in a digital audio file after the file has been
recorded. The first step is to get a profile of the background noise. This can be done by
selecting an area that should be silent, but that contains a hum or buzz. The noise reduc-
tion tool does a spectral analysis of the selected area in order to determine the frequen-
cies in the noise and their corresponding amplitude levels. Then the entire signal is
processed in sections. The frequencies in each section are analyzed and compared to the
profile, and if these sections contain frequency components similar to the noise, these
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Figure 5.17 Interface of a noise reduction Figure 5.18 Interface of a noise reduction tool
tool (from Audition) (from Logic Pro)

can be eliminated below certain amplitudes. Noise reduction is always done at the risk of
changing the character of the sound in unwanted ways. Music is particularly sensitive to
changes in its frequency components. A good noise reduction tool can analyze the har-
monic complexity of a sound to distinguish between music and noise. A sound segment
with more complex harmonic structure is probably music and therefore should not be al-
tered. In any case, it is often necessary to tweak the parameters experimentally to get the
best results.

Some noise reduction interfaces, such as the one in Figure 5.17, give a graphical view of
the frequency analysis. The graph in the top window is the noise profile. The horizontal
axis moves from lower to higher frequencies, while the vertical axis shows amplitude. The
original signal is in one color (the data points at the top of the graph), the amount of noise
reduction is in a second color (the data points at the next level down in amplitude), and the
noise is in a third color (the data points at the bottom of the graph). The main setting is the
amount of noise reduction. Some tools allow you to specify how much to “reduce by”
(Figure 5.17) and some say exactly the level to “reduce to” (Figure 5.18).

You can see from the interface in Figure 5.17 that the noise profile is done by Fourier
analysis. In this interface, the size of the FFT of the noise profiler can be set explicitly.
Think about what the profiler is doing—determining the frequencies at which the noise
appears, and the corresponding amplitudes of these frequencies. Once the noise profile
has been made, the frequency spectrum of the entire audio file can be compared to the
noise profile, and sections that match the profile can be eliminated. With a larger FFT
size, the noise profile’s frequency spectrum is divided into a greater number of frequency
components—that is, there is greater frequency resolution. This is a good thing, up to a
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point, because noise is treated differently for each frequency component. For example,
your audio sample may have a =70 dB background hum at 100 Hz. If the frequency res-
olution isn’t fine enough, the noise reducer may have to treat frequencies between 80 and
120 Hz all the same way, perhaps doing more harm than good. On the other hand, it’s
also possible to set the FFT size too high because there is a tradeoff between frequency
resolution and time resolution. The higher the frequency resolution, the lower the time
resolution. If the FFT size is set too high, time slurring can occur, manifested in the form
of reverberant or echo-like effects.

Noise reducers often allow you to set parameters for smoothing. Time smoothing ad-
justs the attack and release times for the noise reduction. Frequency smoothing adjusts the
extent to which noise that is identified in one frequency band affects amplitude changes in
neighboring frequency bands. Transition smoothing sets a range between amplitudes that
are considered noise and those that are not considered noise.

Noise reducers can also be set to look for certain types of noise. White noise is noise that
occurs with equal amplitude (or relatively equal) at all frequencies (Figure 5.19). Another
way to say this is that white noise has equal energy in frequency bands of the same size.
(Intuitively, you can think of the energy as the area under the curve—the “colored” area—
for a frequency band.) Pink noise has equal energy in octave bands. Recall from Chapter 4
that as you move from one octave to the same note in the next higher octave, you double
the frequency. Middle C on the piano has a frequency of about 261.6 Hz, and the next
higher C has a frequency of 2 * 261.6, which is about 523 Hz. In pink noise, there is an
equal amount of noise in the band from 100 to 200 Hz as in the band from 1000 to 2000 Hz
because each band is one octave wide. Human perception is logarithmic in that our sensi-
tivity to the loudness of a signal drops off logarithmically as frequency increases. Thus,
pink noise is perceived by humans to have equal loudness at all frequencies. If you know
the character of the noise in your audio file, you may be able to set the noise reducer to
eliminate this particular type of noise.

S000 10000 15000

Figure 5.19 White noise with energy equally distributed across
frequency spectrum (from Audition)

A click or pop eliminator can look at a selected portion of an audio file, detect a sudden
amplitude change, and eliminate this change by interpolating the sound wave between the
start and end point of the click or pop. Figure 5.20 shows how a waveform can be altered
by click removal.
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An unwanted click in
an audio file

Zooming in and selecting
the click

The click removed

Figure 5.20 Click removal (from Audition)

5.4 DIGITAL AUDIO FILTERS AND RELATED
PROCESSING

5.4.1 Types of Digital Audio Filters

A digital audio filter is a linear system that changes the amplitude or phase of one or more fre-
quency components of an audio signal. Picture a filter as a black box. The sound goes in one
end with certain frequency and phase characteristics, and it comes out the other end altered.
While an analog filter uses hardware components to operate on the physical properties of a
wave, a digital filter—whether it is implemented in hardware or software—uses mathemati-
cal algorithms to alter sample values. A digital audio filter can be applied to either analog or
digital audio signals. If it is applied to an analog signal, then there is an analog-to-digital con-
verter at the input end and a digital-to-analog converter at the output end.

Filter

Figure 5.21 Audio filter
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Digital audio filters are applied for a variety of reasons. They can be used to separate
and analyze frequency components in order to identify the source of sounds. For example,
undersea sounds could be detected and analyzed to determine the marine life in the area.
Filters can also be used for restoration of a poorly recorded or poorly preserved audio
recording, like an old, scratched vinyl record disk that is being digitized. Digital filters are
the basis for common digital audio processing tools for equalization, reverb, and special
effects.

Digital audio filters can be divided into two categories based on the way they’re imple-
mented: FIR ( finite-impulse response) and IIR (infinite-impulse response) filters. Mathe-
matically, FIR and IIR filters can be represented as a convolution operation. Let’s look at
the FIR filter first. The FIR filter is defined as follows:

KEY EQUATION

Let x(n) be a digital audio signal of L samples for 0 = n = L — 1. Let y(n)
be the audio signal after it has undergone an FIR filtering operation. Let k(n) be a con-
volution mask operating as an FIR filter where N is the length of the mask. Then an FIR
filter function is defined by

N—-1
y(n) = h(n) ®x(n) = kZOh(k) x(n — k)

where x(n — k) = 0ifn — k <O
Equation 5.1

Note that in this section, we will use notation that is standard in the

ASIDE: k() goes by different names, depend-
ing on your source. It can be called the convolution
mask, the impulse response, the filter, or the convo-

lution kernel.

literature. Instead of using subscripts for discrete functions to em-
phasize that they are arrays, as in x,,, we use x(n) and y(n). These
functions are in the time domain. (To emphasize this, we could call
it x(Tn) where T is the interval between time samples, but x(n)
captures the same information with T implicit.) ® is the convolu-

tion operator.
Consider what values convolution produces and, procedurally, how it operates.

¥(0) = h(0)x(0)
y(1) = h(0)x(1) + h(1)x(0)
¥(2) = h(0)x(2) + h(H)x(1) + h(2)x(0)

In general, for n = N,y(n) = h(O)x(n) + h()x(n — 1) + ---+ k(N — 1) x(n —
N+ 1)

We already covered convolution in Chapter 3 as applied to two-dimensional digital im-
ages. Convolution works in basically the same way here, as pictured in Figure 5.22. h(n)
can be thought of as a convolution mask that is moved across the sample values. The val-
ues in the mask serve as multipliers for the corresponding sample values. To compute suc-
ceeding values of y(n), the samples are shifted left and the computations are done again.
With digital images, we applied a two-dimensional mask. For digital sound, convolution is
applied in only one dimension, the time domain. You may notice that the mask is “flipped”

o
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Filter on top, samples on bottom
h(4) | h(3) | h(2) | h(1) | h(0)
x(0) | x(1) | x(2) | x(3) | x(4) | x(5) x(6) x(7) x(8) x(9) ...

D

At time n =4, y(4) is computed.

Filter sizeisN=15

Figure 5.22 Visualizing the order of coefficients
in a filter relative to the samples

relative to the sample values. That is, x(0) is multiplied by (N — 1), and x(N — 1) is mul-
tiplied by A(0).

Equation 5.1 describes an FIR filter. The essence of the filtering operation is k(n), which
is just a vector of multipliers to be applied successively to sample values. The multipliers
are usually referred to as coefficients, and the number of coefficients is the order of a filter.
Engineers also call the coefficients taps or tap weights. The central question is this: How do
you determine what the coefficients h(n) should be, so that k(n) changes a digital signal in
the way that you want? This is the area of digital filter design, an elegant mathematical ap-
proach that allows you to create filters to alter the frequency spectrum of a digital signal
with a great amount of control. We’ll return to this later in the chapter.

Now let’s consider IIR filters. To describe an IIR, we need a mask of infinite length,
given by the following equation:

KEY EQUATION

Let x(n) be a digital audio signal of L samples for0 = n = L — 1. Let y(n)
be the audio signal after it has undergone an IIR filtering operation. Let h(n) be a con-
volution mask operating as an IIR filter where N is the length of the forward filter and
M is the length of the feedback filter. Then the infinite form of the IIR filter function is
defined by

y(n) = h(n) ® x(n) = kZOh(k)x(n - k)

where x(n — k) = 0if n — k < 0 and & is theoretically infinite.
An equivalent form, called the recursive form, is

N—1 M
y(n) = h(n) ® x(n) = kZOakx(n -k - kZIbky(n - k)

Equation 5.2

Again, we use notation that is standard in the literature.

Notice that y(n) depends on present and past input samples as well as on past outputs.
The dependence on past outputs is a kind of feedback. Intuitively, you can understand the
sense in which the recursive equation is equivalent to an infinite summation when you con-
sider that once you have the first output, you’ll continue infinitely to have more outputs.
This is because y(7) is used to create a value y(j) where j > i.

o
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The recursive form of Equation 5.2 expands to a convolution of the form

y(n) = apx(n) + ayx(n — 1) + apx(n — 2) + -+ byy(n — 1)
+ bzy(n - 2) + b3y(l’l -3+

If you have coefficients h(n) for an FIR filter or coefficients a; and b, for an IIR filter, you
can perform a filter as a convolution. The task, then, is to understand how to derive these
coefficients based on specifications for the desired filter. We’ll see how to do this in later in
the chapter.

The main advantage of IIR filters is that they allow you to create a sharp cutoff between
frequencies that are filtered out and those that are not. More precisely, FIR filters require
larger masks and thus more arithmetic operations to achieve an equivalently sharp cutoff as
compared to what could be achieved with an IIR filter. Thus, FIR filters generally require
more memory and processing time. A second advantage of IIR filters is that they can be de-
signed from equivalent analog filters. FIR filters do not have analog counterparts. On the
other hand, FIR filters have an important advantage in that they can be constrained to have
a linear phase response. In a filter with linear phase response, phase shifts for frequency
components are proportional to the frequency. Thus, harmonic frequencies are shifted by
the same proportions so that harmonic relationships are not distorted. Clearly, linear phase
response is important for music. Finally, FIR filters are not as sensitive to noise resulting
from low bit depth and round-off error.

5.4.2 Impulse and Frequency Response

The convolution mask %&(n) for an FIR or IIR filter is sometimes referred to as the impulse
response. Let’s examine the origin of the term.

FIR and IIR filters are examples of linear systems. In the digital audio realm, a system
operates on and changes the values of an audio signal, which is just a vector of sample val-
ues. A system is a linear system if it has the properties of homogeneity and additivity. With
the property of homogeneity, a change in the input signal’s amplitude results in a corre-
sponding change in the output signal’s amplitude. With the property of additivity, if the sys-
tem takes x(7) as input to yield output y(i) and takes x(j) as input to yield output y(j), then
x(@) + x(j) yields output y(i) + y(j).

A unit impulse, also called a delta function, is a vector of values where the Oth value in
the vector is 1 and all the rest are 0. The FIR and IIR filtering functions as defined in
Equation 5.1 and Equation 5.2 are linear systems. The output to either system is k(n) when
the delta function is the input. This is why h(n) is called the impulse response; it is the
response you get from the FIR or IIR function when an impulse is sent through it. That is,
if you do a convolution on a vector of samples that has the shape of a delta function—
a 1 followed by Os—and you use h(n) as the convolution mask, you’ll get the mask h(n) as
the output.

A counterpart to the impulse response is the frequency response. By convention, if the
impulse response is denoted k(n), then the frequency response is denoted H(z). We’ll explain
why this is so later in the chapter, but for now let’s just consider the concept of a frequency
response and its corresponding graph. A frequency response graph describes how a filter acts
on an audio signal. In the ideal, it looks like the graphs in Figure 5.23. Each of the four
graphs depicts a different filter in the abstract. The low-pass filter retains low-frequency
components and eliminates higher frequencies. The high-pass filter does the opposite. The

o



MO5_BURG5802 01 SE C05.QXD 7/2/08 12:29 PM Page 281$

5.4 Digital Audio Filters and Related Processing 281

Low-pass filter High-pass filter

Bandpass filter Bandstop filter

Horizontal axis: Frequency component
Vertical axis: Fraction of frequency component
retained in filtered signal

Figure 5.23 Frequency response graphs

bandpass filter retains frequency components across a particular band. The bandstop filter
eliminates frequencies in a particular band. All of these graphs are idealized. In reality, it
isn’t possible to filter out frequency components with perfect accuracy. However, idealized
graphs like this can describe the general behavior of a filter.

5.4.3 Filters and Related Tools in Digital Audio
Processing Software

The filters and filter-related tools that you’ll find in audio processing hardware and soft-
ware generally go by these names:

* band filters
o low-pass filter—retains only frequencies below a given level.

o high-pass filter—retains only frequencies above a given level.
o bandpass filter—retains only frequencies within a given band.
o bandstop filter—eliminates all frequencies within a given band.

* IIR filters (also called scientific filters)—Bessel, Butterworth, Chebyshev1, and
Chebyshev?2 filters, all four of which are infinite-impulse response filters that can give
fine-tuned control over the frequency bands that are permitted to pass through and the
way in which phase is affected.

* comb filters—add delayed versions of a wave to itself, resulting in phase cancellations
that can be perceived as echo. Phase cancellations eliminate frequency components
when two sine waves that are out-of-phase with each other are summed. Thus, the fre-
quency response has the shape of a comb (Figure 5.24).

* convolution filters—FIR filters that can be used to add an acoustical environment to a
sound file—for example, mimicking the reverberations of a concert hall.

o
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Figure 5.24 Frequency response of a comb filter

* graphic equalizer—gives a graphical view that allows you to adjust the gain of fre-
quencies within an array of bands.

* parametric equalizer—similar to a graphic equalizer but with control over the width of
frequency bands relative to their location.

* crossover—splits an input signal into several output signals, each within a certain fre-
quency range, so that each output signal can be directed to a speaker that handles that
range of frequencies best.

We’ll look at some of these tools more closely in the context of digital processing software,
and then return to the mathematics that makes them work.

5.4.4 Equalization

Equalization (EQ) is the process of selectively boosting or cutting certain frequency com-
ponents in an audio signal. In digital audio processing, EQ can be used during recording to
balance instruments, voices, and sound effects; it can be used in post-processing to restore
a poorly recorded signal, apply special effects, or achieve a balance of frequencies that suits
the purpose of the audio; or it can be applied when audio is played, allowing frequencies to
be adjusted to the ear of the listener.

EQ is a powerful and useful audio processing tool, but it must be applied carefully.
When you change the relative amplitudes of frequency components of an audio piece, you
run the risk of making it sound artificial. The environment in which music is recorded puts
an acoustic signature on the music, adding resonant frequencies to the mix. The frequency
spectra of instruments and voices are also complex. Each instrument and voice has its own
timbre, characterized by its frequency range and overtones. Separating the frequency com-
ponents of different instruments and voices is next to impossible. You may think that by
lowering the high-frequency components you’re only affecting the flutes, but really you
may also be affecting the overtones of the oboes. The point is that generally, it’s better to
get the best quality, truest sound when you record it rather than relying on EQ to “fix it in
post-processing.” Nevertheless, there are times when a good equalizer is an invaluable tool,
one that is frequently used by audio engineers.

You’ve probably already used EQ yourself. The bass/treble controls on a car radio are a
simple kind of equalizer. These tone controls, as they are sometimes called, allow you to ad-
just the amplitude in two broad bands of frequencies. The bass band is approximately 20 to
200 Hz while the treble is approximately 4 to 20 kHz. Figure 5.25 shows four shelving filters.
Frequency is on the horizontal axis and gain is on the vertical axis. The gain level marked
with a 1 indicates the level at which the filter makes no change to the input signal. The other
lines indicate five levels to which you can boost or cut frequencies, like five discrete levels
you might have for both bass and treble on your car’s tone controls. A negative gain cuts the
amplitude of a frequency. A shelving filter for cutting or boosting low frequencies is called a
low-shelf filter. A high-shelf filter boosts or cuts high frequencies. Shelving filters are similar
to low- and high-pass filters except that they boost or cut frequencies up to a certain cutoff
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Gain Gain
Boost level 5 Boost level 5
Boost level 4 Boost level 4
Boost level 3 Boost level 3
Boost level 2 Boost level 2
Boost level 1 Boost level 1
1 1
Frequency Frequency
(a) Low-shelf filter for boosting low frequencies (b) High-shelf filter for boosting high frequencies
Gain Gain
1 1
Cut level 1 Cut level 1
Cut level 2 Cut level 2
Cut level 3 Cut level 3
Cut level 4 Cut level 4
Cut level 5 Cut level 5
Frequency Frequency
(c) Low-shelf filter for cutting low frequencies (d) High-shelf filter for cutting high frequencies

Figure 5.25 Shelving filters

Jfrequency (or starting at a cutoff frequency) after which (or before which) they allow the fre-
quencies to pass through unchanged. Low- and high-pass filters, in contrast, completely
block frequencies lower or higher than a given limit, as we’ll see later in this chapter.

Consider the low-shelf filter for boosting low frequencies in Figure 5.25a. For any of the
five boost levels, as frequencies increase, the amount of gain decreases such that higher fre-
quencies, above the cutoff level, are not increased at all.

You may also be familiar with more fine-tuned control of EQ in the form of a graphic
equalizer on your home stereo. A graphic equalizer divides the frequency spectrum into
bands and allows you to control the amplitude for these bands individually, usually with
sliders. Digital audio processing tools have their equivalent of graphic equalizers, and with
an interface that looks very much like the interface to the analog graphic equalizer on your
home stereo (Figure 5.26). With graphic equalizers, you can select the number of fre-
quency bands. Typically, there are ten frequency bands that are proportionately divided by
octaves rather than by frequency levels in Hz. Recall that if two notes (i.e., frequencies) are
an octave apart, then the higher note has twice the frequency of the lower one. Thus, the
starting point of each band of the graphic equalizer in Figure 5.26 is twice that of the pre-
vious band. If you ask for 2(]) bands, then the bands are separated by half an octave and thus
are spaced by a factor of 22 = V2. If the first band starts at 31.5, then the next starts at
31.5*% V2 ~ 44 Hz, the next starts at 44 * \/2 ~ 63 Hz, and so forth. If you divide the
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Figure 5.26 Graphic equalizer (from Audition)

spectrum into 31() ban3ds, the bands are separated by a third of an octave and thus are spaced
by a factor of 23 = V2 ~ 1.26.

Figure 5.26 shows the interface to a graphic equalizer in an audio processing program. The
Accuracy setting relates to the length of the filter used to achieve EQ. If you’re equalizing only
high frequencies, you can use a smaller Accuracy number. To adjust low frequencies, you need
a larger Accuracy number. A larger filter has more terms in the filtering equation and thus
yields better frequency resolution. This is analogous to the significance of window size in the
discrete Fourier transform, as discussed in Chapter 4. The bigger the window size, the more
frequency components are computed by the DFT. Greater frequency resolution is necessary
when you’re working with the low frequency bands because these bands are narrower than the
high frequency ones. The cost of a larger filter, however, is increased processing time.

A parametric EQ is more flexible for equalization in that it allows you to focus on indi-
vidual bands of frequencies. Rather than having a number of fixed bandwidths, as in the
graphic equalizer, with the parametric equalizer you can set the center point of a band and
its bandwidth and adjust the frequencies in this band as you desire. An example of a sim-
ple digital parametric equalizer interface is shown in Figure 5.27. This EQ operates on only
one band at a time.

Parametric EQs are based on bandpass and bandstop filters. A bandpass filter allows frequen-
cies in a certain band to pass through and filters out frequencies below and above the band.

Figure 5.27 Parametric equalizer (from Logic Pro)
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Ideally, the unwanted frequencies would be filtered out entirely, but in reality this isn’t possi-
ble. Thus, the frequency response graph for a bandpass filter looks more like the bell curve in
Figure 5.28. This type of filter is sometimes called a peaking filter. If you set the gain to a pos-
itive number, the peak is pointed upward and you create a bandpass filter around your central
frequency. If you set the gain to a negative number, the peak is pointed downward and you
create a bandstop filter. A very narrow bandstop filter is also called a notch filter. The Q-factor
(also called quality factor or simply Q) determines how steep and wide the peaking curve is.
The higher the Q-factor, the higher the peak in relation to the width of the frequency band.

Gain

Figure 5.28 Peaking filter

Q-factor is a term adopted from physics and electronics. In physical and electrical sys-
tems, Q-factor measures the rate at which a vibrating system dissipates its energy, a process
called damping. More precisely, it is the number of cycles required for the energy to fall off
by a factor of 535. (The rate 535 is actually e>™, a number chosen because it simplified re-
lated computations.) The Q-factor of an inductor is the ratio of its inductance to its resistance
at a given frequency, which is a measure of its efficiency. Q-factors are also used in acoustics
to describe how much a surface resonates. A surface with a high Q-factor resonates more
than one with a low Q-factor. Instruments and sound speakers have Q-factors. A bell is an
example of a high-Q system, since it resonates for a long time after it is struck. Although a
high Q-factor seems to imply better quality, the right Q-factor depends on the situation. If
your speakers’ Q-factor is too high, they may prolong the normal decay of the instruments,
or “ring” if a signal suddenly stops, making the music sound artificial or distorted.

A graph can be drawn to depict how a system resonates, with frequency on the horizon-
tal axis and energy on the vertical axis. The same type of graph is used to depict a peaking
filter. It is essentially a frequency response graph, depicting which bands of frequencies are
filtered out or left in, except that it plots energy (rather than amplitude) against frequency.
This is shown in Figure 5.29. The peaking filter graph is parameterized by its Q-factor, a
high Q-factor corresponding to a steep peak. Formally, Q-factor can be defined as follows:

KEY EQUATION

Given the graph of a peaking filter, let f,,;4;, be the width of the peak meas-

1
ured at a point that is 5 times the peak’s height, and let f,,;., be the frequency at the
geometric center of the peak, both in Hz. Then the Q-factor, Q, is defined as

f center
Q = —-——-

Suwidrn
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Peak
. T
= <—— Bandwidth —> l pl2
Y
Frequency, on a logarithmic scale >

Figure 5.29 Resonance graph of energy plotted against frequency

In Figure 5.29, frequency is shown in a logarithmic scale. On this graph, the center fre-
quency fienrer 18 in the geometric center of the peak, and the bandwidth f,,;;, is measured
at a point that is half the peak height, called the —3 dB point. Note that the geometric center
min + max

2
plots amplitude (rather than energy) against frequency, the bandwidth would be measured at

is (min*max)% rather than . On a frequency response graph of the filter that
p'ttht' 71 ti th k height
a point that 1s 1mes the peak height.
\/i £

When defined in terms of octaves, the definition of Q becomes the following:

KEY EQUATION

Let n be the bandwidth of a peaking filter in octaves. Then the filter’s
Q-factor, Q, is defined as

\/27

2" — 1

0 =

Given the Q-factor, you can compute the bandwidth of the filter.

% KEY EQUATION
Let Q be the Q-factor of a peaking filter. Then the bandwidth of the filter, n, is
given by
21 ! + \/ ( ! )2 + 1
= [¢) _— _—
n g2 20 20

When you use a parametric EQ, you may not need the equations above to compute a pre-
cise bandwidth. The main point to realize is that the higher the Q, the steeper the peak of
the band. The parametric EQ pictured in Figure 5.27 allows Q to be set in the range of 0.10
to 10, the former being a fairly flat peak and the latter a steep one. Some EQ interfaces ac-
tually show you the graph and allow you to “pull” on the top of the curve to adjust Q, or
you can type in numbers or control them with a slider.

Different types of filters—low-pass, high-pass, shelving, and bandpass—can be grouped
into one EQ tool, sometimes called a paragraphic equalizer. Figure 5.31, Figure 5.32,
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Figure 5.30 Icons for filters Figure 5.31 A paragraphic equalizer (from Waves Native
Power Pack)

0.0cE

Figure 5.32 An EQ that combines high-pass, bandpass/stop, shelving,
and low-pass filters (from Logic Pro)

Figure 5.33, and Figure 5.34 show four paragraphic EQs. Note that frequency is on a loga-
rithmic scales in these figures. Common icons for filters that are used in audio processing
software are shown in Figure 5.30.

When different filters are applied to different frequency bands, as is the case with a para-
graphic EQ, the filters are applied in parallel rather than serially. The audio signal is input
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Figure 5.33 Another EQ that combines high-pass, bandpass/stop,
shelving, and low-pass filters (from Logic Pro)
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Figure 5.34 A paragraphic EQ with wet and dry control (from Sound Forge)

separately into each of the filters, and the outputs of the filters are combined after process-
ing. A parallel rather than serial configuration is preferable because any phase distortions
introduced by a single filter will be compounded by a subsequent phase distortion when fil-
ters are applied serially. If phase linearity is important, a linear phase EQ can be applied.
Linear phase filters will not distort the harmonic structure of music because if there is a
phase shift at a certain frequency, the harmonic frequencies will be shifted by the same
amount. A linear phase filter is pictured in Figure 5.35.
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Figure 5.35 A linear phase EQ (from Waves
Native Power Pack)

Some EQs allow you to set the master gain, which boosts or cuts the total audio signal
output after the EQ processing. You may also be able to control the amount of wet and dry
signal added to the final output. A wet signal is an audio signal that has undergone pro-
cessing. A dry signal is unchanged. A copy of the dry signal can be retained, and after the
signal has been processed and made wet, varying amounts of wet and dry can be com-
bined for the final audio output. A paragraphic EQ with wet and dry controls is shown in
Figure 5.34.

5.4.5 Comb Filters, Delay, Reverb, and Convolution Filters

A type of filter of particular interest is the comb filter. A comb filter is created when an ear-
lier audio sample is added to a later one, causing certain resonant frequencies to be elimi-
nated, as if they are “combed out” at regular frequency intervals. Comb filters can be either
nonrecursive FIR filters or recursive IIR filters. A simple nonrecursive comb filter is
described by y(n) = x(n) + gx(n — m) where m is the amount of the delay in numbers
of samples and ‘ g| = 1. A simple recursive comb filter is described by y(n) = x(n) +
gy(n — m) where m is the amount of the delay in numbers of samples and | g’ < 1. This
filter is recursive in that you feed back the output gy(n — m) into a later output.

You should be able to get an intuitive understanding of what these filters do. In a nonre-
cursive filter, a fraction of an earlier sample is added to a later one, but there’s no feedback.
The result would be simple repetition of part of the sound. The distance from the original
sound is controlled by m. But what if the result of a previous computation is fed back into
a later one, as is the case with a recursive comb filter? A single earlier sound would con-
tinue to affect later sounds, but with decreasing intensity (because each time its effect is
scaled down again by the coefficient g, which we assume is less than 1). That would sound
more like an echo.

Filters are often represented by flow diagrams. The flow diagram for the nonrecursive
and recursive filters are shown in Figure 5.36. z™ symbolizes a delay of m samples in the
term gx(n — m) or gy(n — m). (You’ll understand this notation even better after you read
the section on z-transforms.)
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Figure 5.36 Flow diagrams of simple nonrecursive and recursive filters
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The comb filters given above can be used to create simple delay effects. Changing the co-
efficients, changing the delay m, and cascading filters can create different effects similar to
real-world echoes and reverberation. The phase characteristics of these filters, however, are not
very natural, and thus a single filter like those above isn’t the best for creating realistic echo and
reverberation. What is unnatural is that the phases of all the frequencies aren’t changed suffi-
ciently relative to each other. This isn’t how real audio echoes and reverberations happen.

Imagine that you stand in the middle of a room and play a note on a musical instrument.
You hear the initial sound, and you also hear reflections of the sound as the sound waves
move through space, bounce off the walls and objects in the room, and repeatedly come
back to your ears until the reflections finally lose all their energy and die away. The way in
which the sound waves reflect depends on many factors—the size of the room, the materi-
als with which it’s built, the number of objects, the heat and humidity, and so forth. Further-
more, different frequencies are reflected or absorbed differently, low frequencies being
absorbed less easily than high. (Have you ever sat beside another car at a traffic light and
heard only the booming bass of the other person’s stereo?)

Another type of filter, the all-pass filter, is often used as a building block of reverbera-
tion effects. Adding the all-pass filter to a chain or bank of comb filters helps to make the
reflections sound like they’re arriving at different times. The all-pass filter doesn’t change
the frequencies of the wave on which it acts. It only changes the phase, and it does so in a
way that “smears” the harmonic relationships more realistically. A simple all-pass filter is
defined by y(n) = —gx(n) + x(n — m) + gy(n — m) where m is the number of samples
in the delay and |g| < 1. The flow diagram is shown in Figure 5.37.

Different echo and reverberation effects can be created by combining the above filters in
various ways—in series, in parallel, or nested. One of the first designs that combined filters
in this way was made by Manfred Schroeder. Filter designs for reverberation have gone be-
yond this simple configuration, but the diagram in Figure 5.38 serves to illustrate how the
simple filters can be put together for more realistic sound than is possible with a single filter.

Digital audio processing programs offer tools for delay, multi-tap delay, chorus, flange,
and reverberation. More sophisticated algorithms can be found in audio effects plug-ins

N8
l/
Input —»@—» M — Output
T d
g N

Figure 5.37 Flow diagram for an all-pass filter
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Figure 5.38 Schroeder’s Filter

that you can add to your basic software. Reverb (short for reverberation) is one of the most
useful effects for giving vibrance and color to sound. It can simulate not only how music
and voice sound in different listening spaces, but also how it is produced by particular in-
struments, microphones, loudspeakers, and so forth. Reverb can also enhance the timbre of
instruments and voices, making a recording that is otherwise flat and dull sound interesting
and immediate. Let’s look at how these effects are presented to you in audio processing
software. The distinction between the different delay-based effects is not a strict one, and
the methods of implementation are mostly transparent to the user, but the following discus-
sion will give you an idea of what to expect.

Some audio processing programs make no distinction between delay and echo, while
others have separate tools for them. If the features are separated, then the delay effect is less
realistic, possibly implemented with nonrecursive delay units that create simple repetition
of the sound rather than trailing echoes. From the interface in an audio processing program,
you’re able to set the delay time and the amount of wet and dry signal to be added together.
The multi-tap delay effect compounds the effects of multiple delays, a fap being a single
delay. When an echo effect is considered separate from delay, echo effect is more realistic
in that the spectrum of the signal is changed. That is, a special filter may be used so that the

¥ST Plugin - Echo

Figure 5.39 Echo effect (from Audition)



MO5_BURG5802 01 SE C05.QXD 7/2/08 12:29 PM Page 292$

292 Chapter 5 Digital Audio Processing

phases of echoed sounds are changed to simulate the way different frequencies are re-
flected at different rates. The echo effect uses feedback, and thus interfaces to echo tools
generally allow you to control this parameter.

The chorus effect takes a single audio signal—presumably a voice—and makes it sound
like multiple voices singing or speaking in unison. You can choose how many voices you
want, and the chorus effect delays the different copies of the signal one from the other. This
isn’t enough, however, for a realistic effect. When people sing together, they sing neither in
perfect unison nor at precisely the same pitch. Thus, the frequencies of the different voices
are also modulated according to your settings. Too much modulation makes the chorus
sound off-pitch as a group, but the right amount makes it sound like a real chorus.

The flange effect uses a comb filter with a variable delay time that changes while the
music is played, varying between about 0 and 20 milliseconds. You can picture the teeth of
the comb filter moving closer together and then farther apart as the delay time changes.
Rather than creating an echo, the flange effect continuously boosts some frequencies, cuts
some frequencies, and filters others out completely, but which frequencies are affected
which way changes continuously over time, which is the distinguishing characteristic of
the flange effect. The resulting sound is described variously as “swooshy,” “warbly,” “wah
wah” and so forth, depending on the audio clip to which the effect is applied and the pa-
rameters that are set. Parameters that a flange tool will probably allow you to set include
the initial and final delay time and the amount of feedback.

Reverb can alter an audio signal so that it sounds like it comes from a particular acoustical
space. Let’s consider how reverb can be used to simulate the way sound travels in a room, as
depicted in Figure 5.40. Imagine that a sound is emitted in a room—an instantaneous im-
pulse. The line marked direct sound indicates the moment when the sound of the impulse first
reaches the listener’s ears, having traveled directly and with no reflections. In the meantime,
the sound wave also propagates toward the walls, ceilings, and objects in the room and is re-
flected back. The moments when these first reflections reach the listener’s ears are labeled
first-order reflections. When the sound reflects off surfaces, it doesn’t reflect perfectly. It’s not
like a billiard ball striking the side of a billiard table, where the angle of incidence equals the
angle of reflection. Some of the sound is diffused, meaning that a wave reflects back at mul-
tiple angles. The first-order reflections then strike surfaces again, and these are the secondary
reflections. Because of the diffusion of the sound, there are even more reflections at a higher

99 <

Direct sound

Ist order reflections

Secondary reflections

Amplitude

Higher order reflections

Reverberation

Time
Figure 5.40 Sound reflections in an acoustical space
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order than there were at a lower order. However, each time the waves reflect, they lose some
of their energy to heat, as shown by the decreasing amplitude of higher-order reflections.
Eventually, there can be so many reflected waves that there is barely any time between their
moments of arrival to the listener’s ear. This blur of reflections is perceived as reverb.

Two basic strategies are used to implement reverb effects. The first is to try to model the
physical space or the acoustical properties of an instrument or recording device. For rooms,
this involves analyzing the size of the room, the angles and spacing of walls and ceilings, the
objects in the room, the building and decorating materials, the usual temperature and humid-
ity, the number of people likely to be in the room, and so forth. One standard measure of an
acoustical space is its reverberation time—the time it takes for a sound to decay by 60 dB
from its original level. Based on the analysis of the space, the space’s effect on sound is sim-
ulated by arranging multiple recursive and all-pass filters in serial, in parallel, or in nested
configurations. The many possible arrangements of the filters along with the possible pa-
rameter settings of delay time and coefficients allow for a wide array of designs.

A second method, called the impulse response method, is something you could try exper-
imentally yourself. This method is applied to modeling the way things sound in a particu-
lar listening space. The idea is to test the acoustics of a space by recording how a single
quick impulse of sound reverberates, and then using that recording to make your own
sound file reverberate in the same manner. Ideally, you would go into the listening room
and generate a pure, instantaneous impulse of sound that contains all audible frequencies,
recording this sound. In practice, you can’t create an ideal impulse, but you can do some-
thing like clap your hands, pop a balloon, or fire a starter pistol. This recording is your
impulse response—a filter—that can be convolved with the audio file to which you’re ap-
plying the effect. This technique is sometimes called convolution reverb. There are some
hitches in this if you try it experimentally. The impulse you generate may be noisy. One
way to get around this is to use a longer sound to generate the impulse—a sine wave that
sweeps through all audible frequencies over several seconds. Then this recorded sound is
deconvolved so that, hypothetically, only the reverberations from the room remain, which
can be used as the impulse response. (Deconvolution begins with the output that would re-
sult from applying this filter and determines the input signal.)

Trying to generate your own impulse response file is interesting and illustrative, but for
more polished results you have recourse to hundreds of libraries of impulse files (some-
times called IRs) available commercially or free on the web. These IRs simulate the rever-
berance of concert halls, echo chambers, electric guitars, violins, specialized mics—just
about any sound environment, instrument, voice, or audio equipment you can think of. In
fact, if you have reverberation software that takes IRs as input, you can use any file at all,
as long as it’s of the expected format (e.g., WAV or AIFF). You can get creative and add the
resonance of your own voice, for example, to a piece of music.

5.5 THE RELATIONSHIP BETWEEN CONVOLUTION
AND THE FOURIER TRANSFORM

It can be shown that the Fourier transform is just another side of the coin of convolution.
Let’s think about how filtering might be done with the Fourier transform and see how this
relates to filtering as convolution. What you’re trying to do is the following: Let x(n) be a
digital audio signal. Let X(z) be the discrete Fourier transform of x(n). (The notation used
in this section is standard in digital signal processing.) You want to filter X(z), creating out-
put Y(z), such that ¥(z) has the frequency components at the desired levels. Thus, you want

o
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to find some H(z) such that Y(z) = H(z)X(z). Note that Y(z) is the audio signal repre-
sented in the frequency domain. Thus, the inverse discrete Fourier transform of ¥(z) will
give you y(n), the filtered signal in the time domain. In summary, the steps are these:

take the discrete Fourier transform of digital audio signal x(n), which gives X(z)
describe the specifications of your filter

from these specifications, find H(z) such that ¥Y(z) = H(z) X(z) and Y(z) has the
desired frequency components

perform the multiplication H(z)X(z) to get ¥Y(z)

take the inverse discrete Fourier transform of ¥(z), which gives y(n), your filtered
signal represented in the time domain

The difficult part of the process above is finding H(z), just as the difficult part of designing
a convolution filter is finding h(n). Actually, the two processes amount to the same thing.
Performing Y(z) = H(z)X(z) and then taking the inverse discrete Fourier transform of
Y(z) to get y(n) is equivalent to doing a convolution operation described as y(n) =

N

h(n) @x(n) = Eh(k)x(n — k). The point here is that convolving in the time domain is
=0

equivalent to multiplying in the frequency domain. This is expressed in the convolution
theorem:

e

let X(z) be the discrete Fourier transform of a digital audio signal x(n). Then
y(n) = h(n) ® x(n) is equivalent to the inverse discrete Fourier transform of Y(z), where
Y(z) = H(2)X(2).

Let H(z) be the discrete Fourier transform of a convolution filter k(n), and

In fact, doing multiplication in the frequency domain and then inverting to the time domain
is more computationally efficient than doing convolution in the time domain (if the Fast
Fourier transform is used for the implementation).

The bottom line is that to design a particular filter yourself, you still have to determine
either h(n) or H(z).

Multiplied by
X Y
() HG) —> Y(2)
DFT Convolution DFT-1
theorem
x(n) Convolved with )
h(n) ~)

Figure 5.41 Equivalent operations in time and
frequency domains
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5.6 DESIGNING AND IMPLEMENTING
YOUR OWN FILTERS

5.6.1 FIR Filter Design

Let’s turn now to the design of FIR filters. At the end of this section, we give an algorithm
for creating an FIR filter. You could apply this algorithm without understanding how it
works. If you do want to understand how it works, you should read on through this section
to look at the underlying mathematics, or you can skip ahead to the algorithm and try to
learn by application.

The convolution mask h(n) is also called the impulse response, representing a filter in
the time domain. Its counterpart in the frequency domain, the frequency response H(z), is
also sometimes referred to as the transfer function. The relationship between the impulse
response and the frequency response of a digital audio filter is precisely the relationship be-
tween h(n) and H(z) described in the previous section.

A frequency response graph can be used to show the desired frequency response of a fil-
ter you are designing. For example, the frequency response of an ideal low-pass filter is
shown in Figure 5.42. In the graph, angular frequency is on the horizontal axis. The verti-
cal axis represents the fraction of each frequency component to be permitted in the filtered
signal. This figure indicates that frequency components between —w, and w, are to be left
unchanged, while all other frequency components are to be removed entirely. w,. is the
angular cutoff frequency. It can be assumed that the angular frequency in this graph is nor-
malized. This is done by mapping the Nyquist angular frequency—which is half the sam-
pling frequency—to ar. That is, if f;,,, is the sampling frequency in Hz andf, is the cutoff

Cc

frequency in Hz, then f., normalized, is . In angular units, this gives us the normal-

samp

. Je N .
ized w. = 27 . It makes sense to normalize in this way because the only frequencies
samp

that can be validly digitized at a sampling frequency of f; are frequencies between 0 and

%. Note also that normalization implies that the cutoff frequency w. must be less than .

This frequency response is ideal in that it displays a completely sharp cutoff between the
frequencies that are removed and those that are not changed. In reality, it isn’t possible to de-
sign such a filter, but the ideal frequency response graph serves as a place to begin. The first

Sampling rate mapped to 27
Nyquist frequency mapped to 7
Cutoff frequency mapped to w,.

=2 —w, W, T 2
~<—— Passband ——>

Figure 5.42 Frequency response of an ideal low-pass filter
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/AS|DE: A sinc function is the product of a \

sine function and a monotonically decreasing
function. Its basic form is

sin(x)

sinc(x) = forx#0

1 forx =0

The sinc function is the Fourier transform of the

%tang]e function, and vice versa. /

step in FIR filter design is to determine what ideal impulse response
corresponds to the ideal frequency response.

The frequency response graph shown in Figure 5.42 is an exam-
ple of a rectangle function, which has a value of 1 in a certain finite
range and Os everywhere else. This graph represents an idealized
version of how we’d like our filter to behave. You can think of it as
an idealized form of H(z). Then what would be the corresponding
ideal impulse response, an idealized h(n)?

It can be shown that the inverse Fourier transform of a rectangle
function in the frequency domain is a sinc function in the time
domain, shown in Figure 5.43. The rectangle and sinc functions

arise frequently in digital signal processing and are convenient because of the relationship
they have with each other through the Fourier transform.

[AS|DE: If you compare this ideal impulse r)
sponse equation with Equation 4.5, you should
note the following relationships:

function hjgear(n) f(t)
time n t
frequency ® nw
freq. range —r...m* —00,,.00
base frequency infinitesimal ~ ®

freq. domain function  Hjgeq(w) F,
periodic? no yes
continuous? yes yes

*Actually, it is —...%, but we normalize fre-
quencies so that Higeg(w) = 0 when |w|=, so

& integral is O outside the range —r... . )

Step 1:

Step 2:

Step 3:

Step 4:

/\V/\ /\V/\
NV

Figure 5.43 Sinc function

Let’s see how this works mathematically. Recall the relationship
between the frequency response and the impulse response. The for-
mer is the Fourier transform of the latter. In other words, the inverse
Fourier transform of the ideal frequency response H;;,,; (@) gives us
the ideal impulse response #;,4,.,(1). (An integral rather than a sum-
mation is used because the function is not assumed to be periodic.)

1 g »
Rigeai(n) = py. / Hijoq(@)e " dw
-

This equation can be simplified as follows:

1 . »
Rigeai(n) = P / Hijeq(w)e'"dw
-
1 [,
=— [ "o
277 W,

1 .
= / cos(wn) + isin(wn)dw
27 -,

sin(w.n)
mn

sin(27 f.n)
——— fo
mn

r —00 =p=o00,n#0
and 2f, for n = 0
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In short, we get

in(2
Mfor —X0=n=00,n#0
T and 2f, for n = 0

hideal(n) =

Equation 5.3

In step 1, the integral is limited to the range of —w,. to @, because H ,,(w) is equal to 1 be-
tween —w, and w,, and 0 everywhere else under the assumption that w,. < 7. Step 2 does a
substitution using Euler’s identity. (See Chapter 4.) Step 3 does the integration. Notice that the
sine term falls out because its integral is —cosine, which is an even function, and the negatives
cancel the positives. In step 4, we use the substitution w,. = 2 f,, from the relationship be-
tween angular frequency and frequency in Hz. The case where n = 0 results from taking the
limit as n goes to 0, by I’'Hopital’s rule. We have derived a form of the sinc function, as ex-
pected. The importance of this derivation is that Equation 5.3 gives you the ideal impulse re-
sponse based on your desired cutoff frequency f,.. By a similar process, it is possible to derive
the equations for ideal high-pass and bandpass filters, which are given in Table 5.2.

17:\:]88.3% 8 Equations for Ideal Impulse Responses for Standard

Filters, Based on Cutoff Frequency f. and Band Edge
Frequencies f| and f;

Type of filter Nigear(N), 1 # 0 Higea/(0)
sin(2wf,n)
Low-pass —_— 2f,
an
. sin(2rf,n)
High-pass —_— 1 — 2f,
wn
sin@wfon sin(2zfin
Bandpass emten) _ @y 2(f, = fy)
ahn amhn
sin@wfin sinafon
Bandstop @mhn) - sin@mfon) 1-2f, — f)
wn wn

But we’re still in the realm of the ideal. We don’t yet have a workable FIR filter. The prob-
lem is that a sinc function goes on infinitely in the positive and negative directions, as shown
in Figure 5.43. The amplitude continues to diminish in each direction but never goes to 0. We
can’t use this ideal, infinite sinc function as an impulse response (i.e., a convolution mask) for
an FIR filter. Think about the problem of trying to apply a convolution mask like this in real-
time. To compute a new value for a given audio sample, we’d need to know all past sample val-
ues on to infinity, and we’d need to predict what future sample values are on to infinity.

The next step in FIR filter design is to take this ideal, infinite sinc function and modify
it to something that is realizable as a convolution mask of finite length. However, a conse-
quence of the modification is that you can’t achieve an ideal frequency response. Modify-
ing the ideal impulse response by making it finite creates ripples in the corresponding fre-
quency response.

o
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Fraction of frequency present in filtered signal

0 .
Passband [ Transition | Stopband |

Je band

Frequency ——>
Figure 5.44 Frequency response of a realistic low-pass
filter

Now let’s consider a realistic frequency response graph. Figure 5.44 shows the kind of
frequency response graph you’ll encounter in the literature and documentation on digital
audio filters. Such a graph could represent the specifications of a filter design, or it could
represent the behavior of an existing filter. As with the graph of the ideal frequency re-
sponse, the horizontal axis corresponds to frequency and the vertical axis gives the fraction
of the frequency that will remain in the audio file after it is filtered, corresponding to atten-
vation. In Figure 5.44, frequency is given in Hz rather than radians, and only the positive
portion need be shown since the graph is implicitly symmetrical around 0, but otherwise
the graph is the same in nature as the ideal frequency response graph in Figure 5.42. As be-
fore, we consider the frequency components only up to one-half the sampling rate, which
is the Nyquist frequency, since no other frequencies can be validly sampled. In frequency
response graphs, units on the vertical axis are sometimes shown in decibels. Measured in

Aout

mn

decibels, attenuation is equal to 20 logm( ) dB, where a;,, is the amplitude of frequency

component f before the filter is applied, and a,,, is the amplitude after the filter is applied.
In the graph shown, the units are normalized to range from O to 1, indicating the fraction by
which each frequency component is attenuated. In the case of normalization, attenuation is

measured as ao.m.
m

Compare the realistic frequency response graph to an ideal one. In a realistic graph, the
passband is the area from 0 up to the cutoff frequency f. and corresponds to the frequen-
cies the filter tries to retain. Ideally, you want frequencies up to f. to pass through the filter
unchanged, but in fact they may be slightly attenuated in either the positive or negative di-
rection, shown as a ripple, fluctuations in the frequency magnitude. The stopband corre-
sponds to the frequencies the filter attenuates or filters out. In the realistic graph, the stop-
band has ripples like the passband, indicating that the unwanted frequencies are not filtered
out perfectly. The transition band lies in between. Unlike the transition in an ideal filter, in

o
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a real filter the transition region rolloff—the slope of the curve leading to the transition
band—is not infinitely steep.

When you design an FIR filter, you specify certain parameters that define an acceptable,
though not ideal, frequency response. For example, you could specify:

* for a low-pass filter, the cutoff frequency marking the end of the passband (f. above)
* for a low-pass filter, transition width, the maximum acceptable bandwidth from the
end of the passband to the beginning of the stopband
* for a stopband or bandpass filter, f; and f,, the beginning and end frequencies for the
stopband or passband
* passband deviation, the maximum acceptable range of attenuation in the passband
due to rippling
* stopband deviation, the maximum acceptable range of attenuation in the stopband due
to rippling
So how do you realize a workable FIR filter based on your design specifications? This
takes us back to the ideal impulse response functions we derived in Table 5.2. One way to
design an FIR filter is to take an ideal impulse response and multiply it by a windowing
function w(n). The purpose of the windowing function is to make the impulse response fi-
nite. However, making the impulse response finite results in a frequency response that is
less than ideal. It has ripples in the passband or stopband, like those shown in Figure 5.44.
Thus, you need to select a windowing function that minimizes the ripples in the passband
or stopband and/or creates your desired cutoff slope.
The simplest windowing function is rectangular. It has the
value 1 in some finite range across the infinite impulse response

GS| DE: These are essentially the same \

and Os eve.ry.where.: else. Multiplying by this vxfmdow 31mply trun- Hanning, Hamming, and Blackman function as
cates the infinite impulse response on both sides. The disadvan- Rzl Chmiiae ), fingyshibay Mok Rl
tage of a rectangular windowing function is that it has the effect different in form. The functions in Chapter 4
of providing only limited attenuation in the stopband. Four other were expressed as continuous functions going
commonly used windowing functions are the triangular, Hanning, from 0 to T. In Table 5.3 they are expressed as
Hamming, and Blackman windows. The triangular, Hamming, discrete functions going from ——~ to ZN. This
Hanning, and Blackman windows are tapered smoothly to 0 at shift of values symmetric around 0 results in
each end. The effect is that when you multiply a sinc function by | terms being added rather than subtracted in the

one of these windowing functions, the resulting frequency re- @CUO“' j
sponse has less of a ripple in the stopband than would be achieved
if you multiply by a rectangular window. The disadvantage is that
the transition band will generally be wider.

17:\:] B8 Windowing Functions

2
1 w(n) = 05 + 0.5003<ﬂ>

Rectangular windowing function N
Hanning windowing function

2mn 2mn 4arn
w(n) = 0.54 + 0.46003(7) w(n) = 0.42 + O.SCOS(N — 1) + 0.08003<N — 1)

Hamming windowing function Blackman windowing function
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Supplement on
windowing method
for FIR filter
design:

@
\ /)

mathematical
modeling
worksheet

The process discussed in this section is called the windowing method of FIR filter design.
In summary, the steps are given in Algorithm 5.1. The algorithm is for a low-pass filter, but
a similar one could be created for a high-pass, bandpass, or bandstop filter simply by replac-
ing the function with the appropriate one from Table 5.2 and including the needed parame-
ters. One parameter needed for all types of filters is the order of the filter, N (i.e., the
number of coefficients). The order of the filter will have an effect on the width of the transi-
tion band. Call the width of the transition band b. Assume that the Nyquist frequency in Hz
is normalized to 0.5 and that b is on this scale. Then the relationship between b and N is given
by b = 4/N. Thus, if you know the width you’d like for your transition bandwidth, you can
determine an appropriate order for the filter. A higher-order filter gives a sharper cutoff be-
tween filtered and unfiltered frequencies, but at the expense of more computation.

accorrmim 5.1 [

algorithm FIR_low_pass filter
/*Input: f_c, the cutoff frequency for the lowpass filter, in Hz
f_samp, the sampling frequency of the audio signal to be filtered, in Hz
N, the order of the filter; assume N is odd
Output: a low-pass FIR filter in the form of an N-element array */

{

/*Normalize f_c and w_c so that 7 is equal to the Nyquist angular frequency*/

f ¢ =f_c/f_samp

W c=2%7* ¢

middle = N/2 /*Integer division, dropping remainder*/
/*Create the filter using the low-pass filter function from Table 5.2%/
forn = —N/2to N/2

if (n = 0) fltr(middle) = 2*f ¢

else fltr(n+middle) = sin(2*7*_c*n)/( *n)
/*Multiply the elements of fltr by a windowing function chosen from Table 5.3.
We use the Hanning window function*/
forn = 0 to N-1

fltr(n) = fltr(n) * (0.5 + 0.5*cos((2*7*(n-middle))/N))

We’ve described the windowing method of FIR filter design because it gives an intuitive
sense of the filters and related terminology and is based on the mathematical relationship
between the impulse and frequency responses. However, it isn’t necessarily the best
method. Two other methods are the optimal method and the frequency sampling method.
The optimal method is easy to apply and has the advantage of distributing the ripples more
evenly over the passband and stopband, called equiripple. The advantage of the frequency
sampling method is that it allows FIR filters to be implemented both nonrecursively and re-
cursively and thereby leads to computational efficiency. Another important implementation
issue is the effect of quantization error on filter performance. We refer you to the references
for details on these filter design approaches and issues.
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In this section, we’ve given you the basic mathematical knowledge with which you
could design and implement your own software FIR filters. Of course you don’t always
have to design filters from scratch. Signal processing tools such as MATLAB allow you to
design filters at a higher level of abstraction, but to do so, you still need to understand the
terminology and processes described here. Even when you use the predesigned filters that
are available in audio processing hardware or software, it helps to understand how the fil-
ters operate in order to choose and apply them appropriately.

5.6.2 The Z-Transform

For a complete understanding of IIR and FIR filters, you need to be familiar with the
z-transform. Terminology related to z-transforms can be used in filter design and in de-
scriptions of predesigned filters. The manner in which frequencies are altered by a filter can
be represented conveniently by means of z-transforms. Another application of z-transforms
is to analyze the effects of quantization error on digital filter performance.

Consider a sequence of discrete values x(n) for n = 0, 1,.... The z-transform of this

o
sequence is defined as X(z) = Ex(n)z_" where z is a complex variable. This defines a

one-sided z-transform, with valurésoof n going from O to 00. A full z-transform sums from
—00 to 00, but the one-sided transform works for our purposes.

Notice the naming convention that x(n) is transformed to X(z), y(n) is transformed to
Y(2), h(n) is transformed to H(z), and so forth.

First, think of the z-transform in the abstract. It doesn’t really matter what x(n)
corresponds to in the real world. Try applying the definition to x(n) = [5, —2, 3, 6, 6],
assuming that x(n) = 0 for n > 4. (Henceforth, we’ll assume x(n) = 0 if no value is spec-
ified for x(n). Array positions are numbered from 0.)

X)) =5-27"+372+6z°+ 67"

You can see that X(z) is a function of the complex variable z.

It’s no coincidence that the functions are called H(z), X(z), and Y(z) as they were in the
previous sections. This is because you can turn the z-transform into something more famil-
iar if you understand that it is a generalization of the discrete Fourier transform. Let’s see
how this works.

In general, X(z) is a function that runs over all complex numbers z. However, consider
what you get if you specifically set z = ¢ and apply the z-transform to a vector of length
N. This gives you

N-1 —ib N—l —i2mkn i0 27Tk
for0 =k < N,X(zp) = Ex(n)e o = Ex(n)e v for z=¢€Y and 0 = N
n=0 n=0

Equation 5.4

Equation 5.4 is the discrete Fourier transform of x(n). The subscript k indicates that the sum-
mation is performed to determine each kth frequency component. We will omit the k£ when
it is not important to the discussion, but you should keep in mind that the summation is
performed for every frequency component that is computed. In the context of this equation,
we are considering discretely spaced frequency components. The N frequency components

2 2k
are spaced by Ww, and the kth frequency component is frequency 6 = % Thus, although

o
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X(z) is defined over the whole complex plane, when we perform the discrete Fourier trans-
form of x(n), we are only evaluating X(z) at N specific points on the complex plane. These
points represent different frequency components, and they all lie evenly spaced around the
unit circle.

We already observed that convolution in the time domain is equivalent to multiplication
in the frequency domain in the sense that performing y(n) = h(n) ® x(n) is equivalent to
performing Y(z) = H(z)X(z) and then taking the inverse Fourier transform of ¥(z). So why
do you need z-transforms, since you can focus on a special case of the z-transform, which is
the Fourier transform? The reason is that expressing things using the notation of a z-trans-
form is more convenient mathematically because it helps to lay bare how a given filter will
behave. An IIR filter is defined as a convolution by y(n) = h(n) ® x(n). The equivalent re-
lation in terms of the z-transform is ¥(z) = H(z)X(z), from which it follows that

Y(z)
H(z) = - —
X(2)
: Y(2) . . .
This form of H(z), expressed as ﬁ, is referred to as a transfer function. Note that this
<

form is closely related to the recursive form of an IIR filter.

% KEY EQUATION
N—1

M
Lety(n) = h(n) ®x(n) = D arx(n — k) — D.bry(n — k) be an IR filter,
k=0 k=1

Y(z
as defined in Equation 5.2. Let H(z) = Q be the transfer function for this filter. Then

X(2)
_ayg + a7 ' ar B ap?" + a7+
HGe) = -1 2, ... N N-T ..
1 + blZ + sz + Z + b[Z +

We’ll see in the next section that the transform function gives us a convenient way of
predicting how a filter will behave, or designing an IIR filter so that it behaves the way we
want it to.

5.6.3 Zero-Pole Diagrams and IIR Filter Design

Previously, we looked at graphs of the frequency response, calling the function H(z)—for
example, Figure 5.23. More precisely, this is a graph of the frequency magnitude response.
Recall that the discrete Fourier transform yields frequency components as complex num-
bers. The magnitude of a complex number a + bi is equal to V a® + b%. The frequency
response of a filter can also be visualized by plotting H(z) on the complex number plane.
For a complex number a + bi, the horizontal axis of the complex number plane represents
the real-number component, a, while the vertical axis represents the coefficient of the
imaginary component, b. This is pictured in Figure 5.45. @, D, and 7 are vectors, while
a, b, and r denote the magnitudes of these vectors. Consider a circle of radius » = 1 around

o
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Imagi .
magtnary cos(6) + i sin(0) = ¢
s
T ] _
LT Real
372

Figure 5.45 A circle with radius 1 on the
complex-number plane

the origin. If » = 1, then the points that lie on this circle correspond to the complex num-
bers €. We can see this from simple geometry and vector addition.

a = rlcos@| = |cos|

b = r|sin@| = |sin6)|
7 = (cos6, 0)

D = (0, sinf)

7 = (cos#, sin 6)
The point (cos#, sinf) corresponds to cos § + isin @ in the complex number plane. By
Euler’s identity, this is .

Why do we want to trace a circle on the complex number plane using the point ¢%? Be-

cause this circle is exactly the circle on which we evaluate the z-transform for each fre-
quency component. By Equation 5.4, the kth frequency component, H(z;), is obtained by
evaluating the discrete Fourier transform at z = ¢ = e’.%. Since H(z) yields the
frequency response, evaluating H(zy) tells us how much the kth frequency component is
attenuated by the filter.
Y(2)
X(2)'
X(z) gets closer to 0, H(z) gets larger. The places where Y(z) = 0 are called the zeros of
H(z). The places where X(z) = 0 are called the poles of H(z).

The zeros and poles for a given filtering function can be placed on this same graph. Plac-
ing the zeros and poles on the graph makes it possible to get a general picture of how a fil-
ter affects the digital signal it operates on, without having to evaluate H(z;) for every k. To
see how the filter defined by H(z) will affect a digital signal, you determine its zeros and

We know that H(z) = Notice that as ¥(z) gets closer to 0, H(z) gets smaller. As

Y
poles from H(z) = Xizi and plot them on the zero-pole graph. Once you know where the
Z

o
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zeros and poles are, you can see how frequency components are affected by the filter. For
example, you may be able to see that high frequencies, beyond a certain point, are attenu-
ated while frequencies less than this cutoff are unchanged.

Y(z
This may seem confusing at first. You need XE; to get a filter’s zeros and poles. But
Z
Y(z) is the z-transform of y(n), and y(n) is the output of the filter. How can you determine
Y(z) without actually running the filter? Actually, you do it algebraically. Let’s try a simple
example of an FIR filter to see how you might get values for the zeros and poles, and from
these you can predict the overall effect of the filter.

Let h(n) = [1, —0.5]. Then its z-transform, H(z),is 1 — 0.5z"!. We can divide this into

a numerator and denominator by multiplying by g This gives us H(z) = . Thus,

H(z) hasazeroat z = 0.5and apole at z = 0.
Another way to get a zero and a pole associated with h(n) = [1, —0.5] is as follows.
The difference equation form of this convolution is

1
yn) = S h(kx(n — k) = x(n) — 0.5x(n — 1)
k=0

The z-transform has a property called the delay property whereby the z-transform of
x(n — 1) equals z_lX(z). The z-transform also has the linearity property, which states that
if two functions are equal, then their z-transforms are equal, and the z-transform of a sum
of terms is equal to the sum of the z-transforms of the terms. Thus, if we take the z-trans-
form of both sides of the equation y(n) = x(n) — 0.5x(n — 1), we get

Y(z) = X(z) — 0.577'X(2)
Dividing both sides by X(z) yields

@ _ — _ —1 — Z— 05
X H(z) =1 - 0.5z L

Thus, we have a zero at z = 0.5 (where the numerator equals 0) and a pole at z = 0 (where
the denominator equals 0).

Once you know the zeros and poles, you can plot them on the complex plane in a graph
called a zero-pole diagram. From this you can derive information about the frequency re-
sponse of the filter. At point z = 0.5, there is no imaginary component, so this point lies on
the horizontal axis. The pole is at the origin. This is shown in Figure 5.46.

To predict the filter’s effect on frequencies, we look at each kth point—called it P;—
around the unit circle, where P falls on the x-axis. The angle formed between Py, the

2k
origin, and Py is € (which is equal to %). Each such angle corresponds to a frequency

component of a signal being altered by the filter. Since the Nyquist frequency has been
normalized to 7, we consider only the frequencies between O and 77, in the top semicircle.
Let d ., be the distance between Py and the zero of the filter, and let d ;. be the distance
between P; and the pole. The frequency response H(z) will be larger or smaller in propor-

zero

tion to . In this case, because the pole of the filter is at the origin, d . is the distance

pole

o
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Figure 5.46 A zero-pole diagram

d
from the origin to the unit circle, which is always 1, so the size of “e depends entirely on Supplement on
pole . . z-transforms,
dero- AS d e, gets larger, the frequency response gets larger, and d,,,,, gets increasingly zero-pole diagrams,
large as you move from 8 = 0to 6§ = 7, which means the frequency response gets increas- and IIR filters:

ingly large. Thus, the zero-pole diagram represents a high-pass filter in that it attenuates
low frequencies more than high frequencies.

Now let’s try deriving and analyzing the zero-pole diagram of an IIR filter. Say that your
filter is defined by the difference equation

y(n) = x(n) —x(n — 2) + 0.64y(n — 2) interactive tutorial
This can be written as
y(n) — 0.64y(n — 2) = x(n) — x(n — 2)

The delay and linearity properties of the z-transform yield
Y(z) - 0.647 °Y(2) = X(2) — 2 "X(2)

Supplement on
creating FIR and
IIR filters in
MATLAB:

The rest of the derivation goes as follows:

Y(2)(1 - 0647 = X(2)(1 — 72) =
Yo _ 1-z% -1 _ @@+tDhe-1D

X(2) | _ o642 - 064 (zF 08i)z— 080

= H(?)

The zeros are at z = 1 and z = —1, and the poles are at 7 = 0.8i and z = —0.8i. (Note that

if the imaginary part of z is nonzero, roots appear as conjugate pairs a £ ib.) The zero-pole mathematical

diagram is in Figure 5.47. This diagram is harder to analyze by inspection because we have modeling

more than one zero and more than one pole. To determine when the frequency response worksheet
(z+Dz—-1

gets larger, we have to determine when H(z) = G + 08z — 08) grows, which is the
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Supplement on
creating a filter via
a transfer function:

mathematical
modeling
worksheet

Imaginary

/2

Pole at
z=0.8i

Zero at
z=-1 0

Zero at
z=1
Real

Figure 5.47 A zero-pole diagram for an IIR filter

same thing as determining how (z + 1)(z — 1) gets large relative to (z + 0.8i)(z — 0.8i).
In fact, this diagram represents a bandpass filter, with frequencies near /2 being the least
attenuated.

We’ve looked at how you analyze an existing filter by means of its zero-pole diagram. It
is also possible to design a filter using a zero-pole diagram—>by placing the zeros and poles
in relative positions such that they create the desired frequency response. This is feasible,
however, only for simple filters.

The most commonly used design method for IIR filters is to convert analog filters into
equivalent digital ones. This method relies on the z-transform as well as the equivalent
transform in the continuous domain, the Laplace transform. We won’t go into the details of
this method of filter design. However, you should be aware of four commonly used types
of IIR filters, the Bessel, Butterworth, Chebysheyv, and elliptic filters.

Recall that FIR filters are generally phase linear, which means that phase shifts affect
frequency components in a linear fashion. The result is that harmonic frequencies are
shifted in the same proportions and thus don’t sound distorted after filtering, which is
important in music. In IIR filters, on the other hand, care must be taken to enforce phase
linearity.

Bessel filters are the best IIR filters for ensuring a linear phase response. Butterworth
filters sacrifice phase linearity so that they can provide a frequency response that is as flat
as possible in the passband and stopband (i.e., they minimize ripples). A disadvantage of
Butterworth filters is that they have a wide transition region. Chebyshev filters have a
steeper roll-off than Butterworth filters, the disadvantage being that they have more nonlin-
ear phase response and more ripple. However, the amount of ripple can be constrained,
with tradeoffs between ripple and roll-off or between ripple in the passband (Chebyshev 1
filters) and ripple in the stopband (Chebyshev 2 filters). Elliptic filters, also called Cauer
filters, have the worst phase linearity of the common IIR filters, but they have the sharpest
roll-off relative to the number of coefficients and are equiripple in the passband and stop-
band. The choice of filter depends on the nature of your audio signal and how you want it
to sound after filtering.

o
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5.7 DIGITAL AUDIO COMPRESSION

5.7.1 Time-Based Compression Methods

Chapter 4 covered some methods that effectively reduce the size of audio files. Nonlinear
quantization (e.g., u- or A-law encoding) reduces the amount of data in voice signals by
quantizing high-amplitude signals more coarsely than low-amplitude ones. This works
well because the human ear distinguishes more finely among relatively low amplitudes
(1000 to 5000 Hz) than among high (10,000 to 20,000 Hz). Also, when the technique is ap-
plied to a voice signal such as a telephone transmission, the reduction in quality resulting
from effectively reducing the bit depth isn’t objectionable.

Differential pulse code encoding is another way of making an audio file smaller than it
would be otherwise—by recording the difference between one sample and the next rather
than recording the actual sample value. Variations of DPCM include ADPCM and delta
modulation.

A-law encoding, u-law encoding, delta modulation, and other variations of PCM are
time-based methods. That is, there is no need to transform the data into the frequency do-
main in order to decide where and how to eliminate information. In a sense, these methods
aren’t really compression at all. Rather, they are ways of reducing the amount of data at the
moment an audio signal is digitized, and they are often considered conversion techniques
rather than compression methods.

The most effective audio compression methods require some information about the fre-
quency spectrum of the audio signal. These compression methods are based on psychoa-
coustical modeling and perceptual encoding.

5.7.2 Perceptual Encoding

Perceptual encoding is based upon an analysis of how the ear and brain perceive sound,
called psychoacoustical modeling. Just as digital image compression takes advantage of vi-
sual elements to which the human eye is not very sensitive, perceptual encoding exploits
audio elements that the human ear cannot hear very well. In the case of digital images,
human eyes are not very good at perceiving high frequency changes in color, so some of this
information can be filtered out. The same method would not work with digital audio, how-
ever, since filtering out high frequency sound waves would effectively filter out high-pitched
sounds that are a meaningful component of an audio signal. Then what can be filtered out of
digital audio? What kinds of sounds do humans not hear very well, and in what conditions?

Psychoacoustical tests have shown that there is a great deal of nonlinearity in human
sound perception. The pitch of frequencies is perceived in a nonlinear fashion, for exam-
ple. Octaves are separated by frequencies that are multiples of each other, such that the
width in Hz of a lower octave is much smaller than the width in Hz of a higher octave. The
octave from middle C (called C4) to C5 ranges from 261.63 Hz to 523.25 Hz, while C5 to
C6 ranges from 523.25 to 1046.50 Hz. But the distance from C4 to C5 subjectively sounds
the same as the distance from CS5 to C6.

Humans hear best in the 1000 to 5000 Hz range, the frequency range of human speech.
If you have two tones—the first at, say, 100 Hz and the second at 1000 Hz, you have to play
the 100 Hz tone louder than the 1000 Hz tone to make them equally loud. The same differ-
ence holds true between 1000 Hz and 10,000 Hz tones. Again, you have to play the higher
frequency tone louder to make it sound as loud as the 1000 Hz tone, because the 1000 Hz
tone is in the range where humans hear the best.

o



MO5_BURG5802 01 SE C05.QXD 7/2/08 12:29 PM Page 308$

308 Chapter 5 Digital Audio Processing

Human ability to distinguish between frequencies decreases nonlinearly from lower to
higher frequencies. At low frequencies, we can distinguish between sound waves that are
only a few Hz apart. At high frequencies, the frequencies must be a hundred or more Hz
apart for us to hear the difference. The reason for this is that the ear is divided into frequency
bands called crifical bands. When a sound wave arrives at the ear, it is perceived by a sec-
tion—that is, a band—of the inner ear that responds to that wave’s particular frequency.
Within a small window of time, sound waves with neighboring frequencies—which must be
sensed by the ear’s same critical band—have an effect on each other in that the loudest fre-
quency sound can overpower the others in the band. This phenomenon is called masking.
Critical bands are narrower for low- than for high-frequency sounds. Between 1 and 500 Hz,
bands are about 100 Hz in width. The critical band at the highest audible frequency is over
4000 Hz wide. Think about the implications of relatively narrow bands at low frequencies:
Narrow bands imply that that interference among frequencies occurs over a narrower range,
which explains why we have greater frequency resolution at low frequencies.

The phenomenon of critical bands is one of the most important in perceptual encoding,
since it gives us a basis for eliminating sound information that is not perceived anyway. The
masking phenomenon is pictured in Figure 5.48. Recall from Chapter 1 that the limit below
which you can’t hear is called the threshold of hearing. Masking causes the threshold of
hearing to change in the presence of a dominant frequency component in a band. For exam-
ple, a 500 Hz frequency component is easy to hear, but when a 400 Hz tone occurs at about
the same time and at sufficient amplitude, it can mask the 500 Hz component. Another way
to say this is that the threshold of hearing for 500 Hz is higher in the presence of the 400 Hz
signal. A frequency that raises the threshold of hearing of another frequency is called a
masking frequency or masking tone. As shown in Figure 5.48, the threshold of hearing for
all the frequencies within the critical band of the masking frequency are raised, indicated
by the masking threshold in the figure. All frequencies that appear at amplitudes beneath
the masking threshold will be inaudible. This graph represents the effect of just one mask-
ing tone within one critical band at one window in time. These effects happen continuously
over time, over all the critical bands. The important point to note is that frequencies that are

Threshold of hearing

Ve Masking threshold

Sound pressure level in dB

Frequency

Masking tone  Masked frequency
Figure 5.48 Threshold of hearing and a masking tone
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masked out in an audio signal cannot be heard, so they do not need to be stored. Eliminat-
ing masked information results in compression.

Here’s a sketch of how the masking phenomenon can be applied in compression: A small
window of time called a frame is moved across a sound file, and the samples in that frame are
compressed as one unit. Spectral analysis by means of a filter bank divides each frame into
bands of frequencies; 32 is often the number of bands used. A masking curve for each band is
calculated based upon the relative amplitudes of the frequencies in that band. Analysis of the
masking curve reveals the information that can be discarded or compressed. This is done by
determining the lowest possible bit depth that can be used for the band such that the resulting
quantization noise is under the masking curve. Further refinements can be made to this
scheme. For example, temporal masking can be applied, based on the phenomenon of one sig-
nal blocking out another that occurs just before or just after it. Following the perceptual filter-
ing step, the remaining information is encoded at the bit depth determined for each band.

In the sections that follow, we will use MPEG compression to illustrate how perceptual
encoding is implemented. MPEG coding has been one of the dominant audio compression
methods since the 1990s. Other important audio coding schemes exist that we won’t exam-
ine here. For example, AC3-Dolby audio is a widely used audio codec that is used in DVD
video, digital TV, and video playstations. Based on perceptual encoding, AC3-Dolby uses
many of the techniques used in MPEG compression.

5.7.3 MPEG Audio Compression
5.7.3.1 Overview of MPEG

MPEG, an acronym for the Motion Picture Experts Group, represents a family of compres-

sion algorithms for both digital audio and video. In Chapter 7, we’ll cover MPEG video

compression algorithms. In this section we focus only on the audio portion of MPEG.
Standardized by ISO/IEC, MPEG has been developed in a num-

ber of phases since the 1990s: MPEG-1 (1991), MPEG-2 (1994),

MPEG-4 (1998), and MPEG-7 (2003). Each is targeted at a differ- GSA'D_E The term version s sometimes }lsed\
to distinguish MPEG-1, 2, 4, and 7, but this

isn’t the most appropriate term. Versions are
generally implementations that are developed

ent aspect of multimedia communication. MPEG-1 covers CD
quality and audio suitable for video games. MPEG-2 covers multi-

channel surround sound. MPEG-4 covers a wide range of audio over time, each with improvements and addi-
including simple voice, MIDI, high-end audiophile sound, and tions over the previous. MPEG phases have
interactive systems. MPEG-7, also called Multimedia Content | different purposes, targeted at different systems

Description, supports searching and filtering of multimedia data. @ types of multimedia.

J

The phases of the MPEG audio standard are also divided into three
layers, Audio Layers I, II, and III. The compression algorithms
increase in sophistication from Layer I to Layer III, requiring more computation for encod-
ing and decoding, but generally with better playback quality in proportion to the bit depth.
The naming convention is a little confusing, but just remember that the Arabic numerals in-
dicate phases and the Roman numerals indicate layers within a phase. (Unfortunately, not
all sources adhere to this distinction.) Sometimes abbreviations are used. The well-known
MP3 audio file format is actually MPEG-1 Audio Layer III.

AAC compression, which stands for Advanced Audio Coding, is not standardized as a
layer, but it is available in both MPEG-2 and MPEG-4. AAC has been implemented in pro-
prietary form as AT&T’s a2b music and as Liquid Audio. It supports a wide range of sam-
pling rates and number of channels with excellent quality at relatively low bit rates.

You may find yourself confused by the various bit rates that you’ll see cited for different
implementations of MPEG audio. The bit rate tells you how much data there is per second of

o
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compressed audio. Think about what might cause this number to be relatively larger. If you
start with a higher sampling rate and bit depth, you’re going to get a higher bit rate. For ex-
ample, a sampling rate of 48 kHz results in a higher bit rate than a sampling rate of 44.1 kHz.
Also, more stereo channels yield a higher bit rate. Finally, a compression algorithm that is less
lossy gives a higher bit rate. A range of bit rates is associated with each MPEG audio layer
because the layer’s compression method can be applied to audio files of different sampling
rates, either mono or stereo. In Table 5.4, for example, the lowest bit rate cited for MPEG-1
results from compressing 32 kHz mono signals. The highest bit rate in MPEG-1 Layer I (448
kb/s) corresponds to compressing a 48 kHz stereo file. The fact that the maximum bit rate in
a layer gets smaller from Layer I to Layer Il is a result of the greater complexity of the Layer
IIT compression algorithm compared to the Layer I algorithm—that is, the Layer III can com-
press more without loss of quality, but it takes more time to do so.

17:\:]88. %8 Phases and Layers of MPEG Audio Compression

Sampling Rates
Version Data Rates Applications Channels Supported
MPEG-1 CD, DAT, ISDN, video mono or 32,441, and
Layer | 39-448 kb/s games, digital audio stereo 48 kHz
Layerll  32-384Kbis proadeasting, musi
Layerll 32320 kbis ;0 it
MPEG-2 LSF (Low audio files with low mono or 16, 22.05, and
Sampling Frequency) sampling frequency stereo 24 kHz
Layer | 32-256 kb/s
Layer Il 8-160 kb/s
Layer Il 8-160 kb/s
MPEG-2 Multichannel multichannels, 5.1 32,441, and
Layer | max 448 kb/s multilingual surround 48 kHz
Layer Il max 384 kb/s extensions
Layer lIl max 32 kb/s
AAC in 8-384 kb/s multichannels, music up to 48 32,441, and 48
MPEG-2 shared on the web, channels kHz and other
and MPEG-4 portable music rates between 8
(Advanced players, cell phones and 96 kHz
Audio
Coding)

The amount of time needed for encoding and decoding has the greatest impact on real-
time audio, such as for two-way voice conversations. In general, a delay of more than
10 milliseconds can be disturbing in a voice conversation. MPEG audio encoding delays
are on the order of between 15 milliseconds for Layer I and 60 milliseconds for Layer III,
dependent on the hardware and the software implementation.

The compression rates that you may see cited for different layers of MPEG give you the
general picture that higher layers yield better compression. For example, MPEG-1 Layer 1
is cited as having a compression rate of about 4: 1, Layer 2 as about 7: 1, and Layer III as
about 11: 1. However, as with bit rates, compression rates don’t mean much unless you con-
sider what type of audio is being compressed. To get a sense of the compression rate, con-
sider that uncompressed CD-quality stereo requires 32 bits per sample * 44,100 samples/s =
1.4112 Mb/s. Compressing CD-quality stereo to 128 kb/s using MP3 encoding yields a
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MP3/mp3PROE Encoder Options

Presets

x

| x| add | Deletel ”P’”‘!

(¢ CER (Constark Bitrate) (% MP3 Constant Bitrate (CBR)

5 . encoding will use the same
" YR (Yariable itrate) ' mpaPRO® bitrate throughout the entire

128 Kbps, 44100 Hz, Stereo (11.0:1) 7] ﬂ:ih;gizfdt:;em“;ﬁtmmmm

40 kbps, 24000 Hz, Sterea (35.3:1) &) | predictable For bandwidth and
43 Kbps, 16000 Hz, Stereo (29.4:1) ! File size.

43 Kbps, 22050 Hz, Stereo (29.4:1)

43 Kbps, 24000 Hz, Stereo (29,4:1) Cancel |
56 Kbps, 16000 Hz, Stereo (25.2:1)

56 Kbps, 22050 Hz, Stereo (25.2:1) Help |

56 Kbps, 24000 Hz, Stereo (25.2:1)

64 Kbps, 22050 Hz, Stereo (22.1:1) . << Simple |
64 Kbps, 24000 Hz, Stereo (22.1:1)
—| 80 kbps, 22050 Hz, Stereo {17.6:1)
80 Kbps, 24000 Hz, Stereo (17.6:1) ¥ Set 'Private’ it
80 Kbps, 32000 Hz, Stereo (17.6:1) r S_t 'c iaht" it
96 Kbps, 22050 Hz, Sterea (14.7:1) 58 SR ]
96 Kbps, 24000 Hz, Sterea (14.7:1) I" set ‘Original' Bit

96 Kbps, 32000 Hz, Stereo (14.7:1)
96 Kbps, 44100 Hz, Stereo (14.7:1)

112 Kbps, 32000 Hz, Stereo (12.6:1) Padding IISO Padding 'l

112 Kbps, 44100 Hz, Stereo {12
™ set all decoding ko 32-bit

128 Kbps, 32000 Hz, Stereo i1
5, 44100 Hz, Steren | ™ Encode Steren as Dual Channel
| ¥ ‘irite CRC Checksums

bps, 32000 Hz, (8
160 Kbps, 44100 Hz, Stereo (_8.

Figure 5.49 MP3 compression bit rate options

compression rate of 11: 1. But MP3 can also be compressed at 192 kb/s, which is a rate of
about 7: 1. You can see that to generate specific compression rates, you need to compare the
initial bit rate with the final bit rate. To some extent, the final bit rate is your own choice.
When you compress an audio file with an MPEG compressor, you get a list of bit rate op-
tions, as shown in Figure 5.49. The lower the bit rate, the more compression you get, but at
the sacrifice of some sound fidelity. Notice that you can also choose between constant bit
rate (CBR) and variable bit rate (VBR). CBR uses the same number of bits per second re-
gardless of how complex the signal is. VBR uses fewer bits for passages with a smaller dy-
namic range, resulting overall in a smaller file.

The MPEG audio layer and bit rate that is best for a given application depends on the na-
ture of the audio files being compressed and how high a bit rate the user can tolerate. For
example, MPEG-1 Layer 2 (sometimes referred to as MP2) gives better quality sound than
MP3 if you don’t mind relatively higher bit rates, and it requires lower encoding delays.
For these reasons, it is widely used for digital radio. MP3 compresses well and has been ex-
tremely popular for music files that are shared through the web. The usual MP3 bit rate of
128 or 192 kb/s creates reasonable-size files that don’t take too much time to download and
that have good quality for playback.

MPEG layers are backward compatible so that, for example, a Layer III decoder can de-
code a Layer I stream. MPEG-2 decoders are backward compatible with MPEG-1. Propri-
etary implementations of MPEG such as AT&T’s a2b and Liquid Audio are not mutually
compatible.

5.7.3.2 MPEG-1 Audio Compression

We focus on MPEG-1 compression because it illustrates perceptual encoding concepts
well, and it can be explained understandably in a fairly short space. MPEG-2 and AAC use
many of the same techniques as those described in this section, but with additional refine-
ments to further improve the audio quality and handle other special applications.

None of the MPEG phases prescribe an encoding algorithm. Instead, they offer psychoa-
coustical models of audio compression. The MPEG-1, for example, proposes two psychoa-
coustical models, one more complex and offering higher compression than the other. What

o
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aLcoriTHM 5.2 [

algorithm MPEG-1_audio
/*Input: An audio file in the time domain
Output: The same audio file, compressed*/
{
Divide the audio file into frames
For each frame {
By applying a bank of filters, separate the signal into frequency bands.
For each frequency band {
Perform a Fourier transform to analyze the band’s frequency spectrum
Analyze the influence of tonal and nontonal elements (i.e., transients)
Analyze how much the frequency band is influenced by neighboring bands
Find the masking threshold and signal-to-mask ratio (SMR) for the band,
and determine the bit depth in the band accordingly
Quantize the samples from the band using the determined bit depth
Apply Huffman encoding (optional)
}
Create a frame with a header and encoded samples from all bands
}
}

is dictated by the standard is how the bit stream must look to the decoder. Implementers can
create whatever ingenious algorithms they can imagine, as long as the compressed bit stream
is in the format the decoder expects. The advantage to this is that algorithms can be refined
and improved, and existing decoders will still work on the new implementations.

Algorithm 5.2 and Figure 5.50 show the basic steps common to most implementations
of MPEG-1 compression, which is sufficient to give the flavor of MPEG compression in
general. First, try to get an overview of the method, and then you can focus on some of the
motivations and details of each step.

1. Divide the audio file into frames and analyze the psychoacoustical properties of
each frame individually.

Motivation: Each frame covers a sequence of samples in a small window of time. To
analyze how one frequency component might mask neighboring ones, it’s necessary to
look at samples that are close to each other in time. The masking phenomenon happens
only when different frequencies are played at close to the same time.

Compressed
Audio signal | 3 filter |- Bit Bitstream | audio signal
. T
filter bank . allocator formattlng

Figure 5.50 MPEG audio compression

. Psycho-
Fourier Y .
acoustical
transform .
analysis
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Details: Frames can contain 384, 576, or 1152 samples, depending on the MPEG phase
and layer. It may seem odd that these numbers are not powers of two. However, when fre-
quency analysis is done on these samples, a larger window is placed around the sample, and
the window is a power of two.

For the remainder of these steps, it is assumed that we’re operating on an individual
frame.

2. By applying a bank of filters, separate the signal into frequency bands.

Motivation: The samples are divided into frequency bands because the psychoacoustical
properties of each band will be analyzed separately. Each filter removes all frequencies ex-
cept for those in its designated band. Once the psychoacoustical properties of a band are an-
alyzed, the appropriate number of bits to represent samples in that band can be determined.

Details: The use of filter banks is called subband coding. Say that there are n filters in
the filter bank. n copies of the signal are generated, and a copy is sent through each of the
filters. (In MPEG-1, for example, n = 32.) Time-domain bandpass filters are applied such
that each filter lets only a range of frequencies pass through. Note that the n frequency
bands are still represented in the time domain—that is, they contain samples of audio con-
secutive points in time. Also, the amount of data does not increase as a result of dividing
the frame into bands. If, for example, 384 samples entered the 32 filters, each filter pro-
duces 12 samples. There is no increase in data.

The previous section on FIR and IIR filters shows that bandpass filters are never ideal in
that you cannot perfectly isolate the band of filters you want. The frequency response graph
is never a perfect rectangle like the one pictured in Figure 5.42, with a sharply vertical
cutoff between the desired frequencies and the filtered-out frequencies. Instead, the cutoff
between the frequencies is a sloped line, called an attenuation slope. For this reason, the
frequency bands overlap a little. If this overlap is not accounted for, then there will be alias-
ing when the signal is reconstructed. Quadrature mirror filtering (QMF) is a technique that
eliminates the aliasing. It does so by making the attenuation slope of one band a mirror
image of the attenuation slope of the previous band so that the aliased frequencies cancel
out when the signal is reconstructed. This is pictured in Figure 5.51.

In MPEG-1 Layers I and II, the frequency bands created by the filter banks are uni-
form in size. This means that their width doesn’t match the width of the critical bands in

Attenuation slopes

/ Overlap between bands

Frequency band 1 Frequency band 2
Figure 5.51 Quadrature mirror filter (QMF)
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human hearing, which are wider at high frequencies. However, the way in which the fre-
quency components of a band are analyzed can compensate somewhat for this disparity.
In MP3 encoding, the modified discrete cosine transform (MDCT) is used to improve
frequency resolution, particularly at low-frequency bands, thus modeling the human
ear’s critical bands more closely. Also, MP3 uses nonlinear quantization, where (like in
m-law encoding) the quantization intervals are larger for high amplitude samples.

3. Perform a Fourier transform on the samples in each band in order to analyze the
band’s frequency spectrum.

Motivation: The filters have already limited each band to a certain range of frequencies,
but it’s important to know exactly how much of each frequency component occurs in each
band. This is the purpose of applying a Fourier transform. From the frequency spectrum,
a masking curve can be produced for each band. Then the number of bits with which to
encode each band can be chosen in a way that pays attention to the elevated noise floor
produced from masking.

Details: Another copy of each frame, called a sidechain, is created so that the Fourier trans-
form can be applied. A 512 or 1024-sample window is used. You may notice that this is not the
same size as the number of samples in a frame. In fact, the Fourier transform is done on a win-
dow that surrounds the frame samples. For example, if a frame has 384 samples, 1024 samples
that encompass this window are used for the Fourier transform. If the frame has 1152 samples,
two 1024-sample Fourier transforms are done, covering two halves of the frame.

4. Analyze the influence of tonal and nontonal elements in each band. (Tonal ele-
ments are simple sinusoidal components, such as frequencies related to melodic and
harmonic music. Nontonal elements are transients like the strike of a drum or the
clapping of hands.)

Motivation: It would not be good to allow masking to eliminate nontonal elements that
punctuate an audio signal in meaningful ways. Also, if nontonal elements are not com-
pressed properly, ringing or pre-echo effects can result.

Details: The longer the time window is in frequency analysis, the better the frequency
resolution, but the worse the time resolution. The effect of poor time resolution is that sound
elements that occur very close to one another in time might not be distinguished sufficiently,
one from the other. This in turn can mean that transient signals are not properly identified.
Layers II and III have a longer time window than Layer I, so they have better time resolution.

5. Determine how much each band’s influence is likely to spread to neighboring
frequency bands.

Motivation: It isn’t sufficient to deal with bands entirely in isolation from each other,
since there can be a masking effect between bands.
Details: Empirically determined spreading functions can be applied.

6. Find the masking threshold and signal-to-mask ratio (SMR) for each band, and
determine the bit depth of each band accordingly.

Motivation: Within each band, a high amplitude frequency component can mask other
frequency components. The precision with which samples need to be represented depends
on the ratio of the loudest sample among them to the amplitude below which they can’t be
heard, even if they are present. This is in fact the definition of SMR: the ratio between the
peak sound pressure level and the masking threshold is the SMR (Figure 5.52). This ratio
determines how many bits are needed to represent samples within a band.

Details: The main idea you should get from this is that the masking phenomenon causes
the noise floor within a band to be raised. The number of bits per sample varies from band
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Threshold of hearing s/m = signal-to-masking noise ratio

Masking threshold
/ g

Sound pressure level in dB

T Frequency
Maximum sound pressure level

Figure 5.52 Signal-to-masking noise ratio

to band depending on how high the noise floor is. When the noise floor is high relative to
the maximum sound pressure level within a band, then fewer bits are needed. Fewer bits
create more quantization noise, but it doesn’t matter if that quantization noise is below the
masking threshold. The noise won’t be heard anyway.

MP3 has interesting variation in its design, allowing for a bit reservoir. In a constant bit
rate (CBR) encoding, all frames have the same number of bits at their disposal, but not all
frames need all the bits allocated to them. A bit reservoir scheme makes it possible to take
unneeded bits from a frame with a low SMR and use them in a frame with a high SMR.
This doesn’t increase the compression rate (since we’re assuming CBR), but it does im-
prove the quality of the compressed audio.

7. Quantize the samples for the band with the appropriate number of bits, possibly
following this with Huffman encoding.

Motivation: Some bit patterns occur more frequently than others. Huffman encoding
allows the frequently occurring bit patterns to be encoded with fewer bits than patterns that
occur infrequently.

Details: MPEG-1 Layers 1 and 2 use linear quantization, while MP3 uses nonlinear.

After quantization, the values can be scaled so that the full dynamic range offered by the
bit depth is used. The scale factor then has to be stored in the frame.

In MP3 encoding, the frame data is reordered after quantization and divided into regions
so that Huffman tables can be applied. These empirically generated tables reflect the prob-
abilities of certain bit patterns in each region.

A refinement in the above algorithm is related to the compression of stereo information.
There are a number of different ways to compress stereo. The joint stereo compression
method allows one stereo channel to carry the information that is identical in both chan-
nels, while the other channel carries the differences. This is a lossless method that gives
fairly good compression. The intensity stereo compression method replaces a left and right
signal with one signal plus a vector representing directional information. This yields the
highest stereo compression rate, but obviously it is a lossy method. Mid/side stereo coding
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Header CRC Bit Scale Sample values Extra

(Layers | allocation | factor info
(Sync word, iandii) | by band by band (Artist,
phase and layer #s, album,
bit rate, year,
sampling frequency, etc.)
etc.)

Figure 5.53 MPEG bit stream

calculates a middle channel as (left + right)/2 and side channel as (left — right)/2, which
then is encoded with fewer bits than straightforward stereo representation. Mid/side stereo
coding has a less detrimental effect on phase information than intensity stereo does.

The MPEG standard defines how a compressed bit stream must look. The compressed
signal is divided into frames. A sketch of an MPEG frame is shown in Figure 5.53. Each
frame begins with a sync word to signal that this is the beginning of a new frame. The
header then tells the bit rate, sampling frequency, mono or stereo mode, and so forth. CRC
stands for cyclic redundancy check, which is an error-checking algorithm to ensure that no
errors have been inserted in transmission. Following the CRC, the number of bits used in
each band is listed. Then the scale factor for each band is given. The largest part of the
frame is devoted to the samples. Extra information may be added to a frame in the form of
ID3 tags. ID3 is an informal standard for giving information about music files being com-
pressed, including copyright, artist, title, album name, lyrics, year, and web links.

5.7.3.3 MPEG-2, AAC, and MPEG-4

The MPEG-2 audio standard is complicated by the fact that it is divided into three formats:
MPEG-2 Multichannel, MPEG-2 LSF (low sampling frequency), and MPEG-2 AAC
(Advanced Audio Coding). The first two of these are further subdivided into Layers, as
shown in Table 5.4.

MPEG-2 Multichannel, as the name indicates, has features to accommodate more than
one channel—up to 5.1 stereo surround sound. This type of surround sound allows music
to be played through three front speakers, two back speakers, and one subwoofer for bass
tones. MPEG-2 Multichannel is backward compatible with MPEG-1 so that an audio file
compressed with an MPEG-1 encoder can be played by an MPEG-2 decoder.

MPEG-2 LSF allows sampling rates of 16, 22.05, and 24 kHz. It is sometimes called
MPEG-2.5. This format offers better frequency resolution, and hence better quality in the
compressed file, if lower sampling rates can be used.

A third format—MPEG-2 AAC—was designed to take advantage of newly developed
psychoacoustical models and corresponding compression techniques. Applying these tech-
niques, however, meant that the AAC could not be backward compatible with MPEG-1.
Thus, AAC was originally referred to as MPEG-2 NBC (not backward compatible), while
MPEG-2 Multichannel was called MPEG-2 BC.

AAC handles multiple channels up to 5.1 surround sound, compressing down to a bit rate
of 64 kb/s per channel, which yields 384 kb/s total. AAC achieves this bit rate with even bet-
ter quality than MPEG-2 Multichannel. Listening tests show, for example, that a music file
compressed as MPEG-2 AAC at, say 96 kb/s sounds better than the same one compressed as
MP3 at 128 kb/s. Because of its good quality, AAC has gained popularity for use in portable
music players and cell phones, two of the biggest markets for compressed audio files.
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The AAC psychoacoustical model is too complicated to describe in detail in a short
space. The main features include the following:

» The modified discrete cosine transform improves frequency resolution as the signal is
divided into frequency bands.

» Temporal noise shaping (TNS) helps in handling transients, moving the distortion as-
sociated with their compression to a point in time that doesn’t cause a pre-echo.

* Predictive coding improves compression by storing the difference between a pre-
dicted next value and the actual value. (Since the decoder uses the same prediction al-
gorithm, it is able to recapture the actual value from the difference value stored.)

* Not all scale factors need to be stored since consecutive ones are often the same. AAC
uses a more condensed method for storing scale factors.

* A combination of intensity coding and mid/side stereo coding is used to compress in-
formation from multiple channels.

* A model for low-delay encoding provides good perceptual encoding properties with
the small coding delay necessary for two-way voice communication.

The AAC compression model is a central feature of both MPEG-2 and MPEG-4 audio.
MPEG-4, however, is a broad standard that also encompasses DVD video, streaming
media, MIDI, multimedia objects, text-to-speech conversion, score-driven sound synthesis,
and interactivity.

We refer you to the sources at the end of this chapter and Chapter 4 if you’re interested
in more implementation details of AAC, MPEG-4, and the other compression models.

EXERCISES AND PROGRAMS

I. Say that the first 30 values of a digital audio file, x(n), are those given below, and you
apply the nine-tap FIR filter, k(n), below. What is the value of the 10th digital sample
after filtering?

x(n) = [138, 232, 253, 194, 73, =70, —191, —252, =233, —141, —4, 135, 230, 253,
196, 77, —66, —189, =251, =235, —144, —7, 131, 229, 253, 198, 80, —63, —186, —251]

h(n) = [0.0788, 0.1017, 0.1201, 0.1319, 0.1361, 0.1319, 0.1201, 0.1017, 0.0788]

N-1 M
2. Say that you have an IIR filter y(n) = Eakx(n — k) — Ebky(n — k) where
k=0 k=1

a =[0.389,—1.558,2.338, —1.558,0.389] and b = [2.161, —2.033,0.878, —0.161].
Note that vector a is numbered starting at index 0 and vector b is numbered starting at
index 1.

To find k(n) for this filter so that you can define it with

o
) = hm) ®x(m) = S h()x(n — k),
k=0 .
you can evaluate a unit impulse run through the function y(n) = Eakx(n — k) —
k=0
M
Ebk y(n — k). Do this to get k(n). You’ll have to give it a finite length. Try 32 taps.
k=1

You might want to write a program to do the computation for you. Graph the impulse
response that you get.

o
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Say that you have a graphic equalizer that allows you to divide the frequency spec-
trum into 30 bands, each separated by a third of an octave. If the first band is at 31 Hz,
where are the remaining 29 bands, in Hz?

For a peaking filter, assume that you want the center frequency of the curve defining

the peak to be at 8000 Hz, and you want the bandwidth of the peak to be 1000 Hz.

a. What is the Q-factor?

b. What is the corresponding bandwidth of this filter, in octaves?

c. What is the Q-factor of a peaking filter with a central frequency of 2000 Hz and a
bandwidth of 1000 Hz?

d. What is the corresponding bandwidth of the filter, in octaves?

e. What is Q if you want the peaking filter to span one octave?

The step response of a continuous filter is the integral of the filter—the area under the
curve that graphs the filter. Thus, the step response of a discrete filter would be the sum
of the discrete points that define the filter. Create the impulse response of a low-pass fil-
ter, or find some values in another source. (See the online worksheets for how to create
an FIR filter.) Then determine the corresponding step response and graph it. Describe
what the step response tells you about the filter, with regard to the steepness of the step.
Dynamics processing, interactive tutorial and worksheet, online

Windowing method for FIR filter design, mathematical modeling worksheet, online
Z-transforms, zero-pole diagrams, and filters, interactive and worksheet online
Creating FIR and IIR filters with MATLAB.

Creating a filter via a transfer function, mathematical modeling worksheet, online

APPLICATIONS

Examine the specifications of your sound card (or the one you would like to have).
What kind of input and output ports does it have? What is its signal-to-noise ratio?
Does it handle MIDI? If so, how?

Examine the specifications of your microphone (or the one you would like to have).
Is a dynamic mic, a condenser mic, or some other kind? Does your microphone re-
quire power? What frequencies does it handle best? Do you need different mics for
different purposes?

If you have access to more than two microphones with significantly different character-
istics, try making similar recordings with both of them. Listen to the recordings to see if
you can hear the difference. Then look at the frequency spectrum of the recordings and
analyze them. Are the results what you expect, based on the specifications of the mics?
Create a one-minute radio commercial for a hypothetical product, mixing voices,
music, and sound effects. Record the commercial at your digital audio workstation
using multitrack editing software. Record and edit the different instruments, voices,
and so forth on different tracks. Experiment with filters, dynamics processing, and
special effects. When you’ve finished, mix down the tracks, and save and compress
the audio in an appropriate file type. Document and justify your steps and choices of
sampling rate, bit depth, editing tools, compression, and final file type.

If you don’t know already, find out what loops are. Find a source of free online loops.
Create background music for a hypothetical computer game by combining and editing
loops. (At the time of this writing, Acid Loops is an excellent commercial program for
working with loops. Royalty Free Music is a source for free loops.) If you create a
computer game when you get to Chapter 8, you can use your music in that game.
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6. See if you can replicate the impulse response method of creating a convolution filter for
reverb that makes an audio file sound like it was recorded in a certain acoustical space.
(If you do a web search, you should be able to find descriptions of the details of this
method. Look under “convolution reverb.” For example, at the writing of this chapter, a
paper entitled “Implementation of Impulse Response Measurement Techniques” by J.
Shaeffer and E. Elyashiv could be found at www.acoustics.net/objects/pdf/IR-paper.pdf.)
Examine the features of your digital audio processing program or programs and
try the exercises below with features that are available.

7. What file types are supported by your audio editing software? What compressions
methods?

8. Make a simple audio file and intentionally put a click or pop in it. See if you can re-
move the click or pop with your audio editing program.

9. Examine the tools for dynamics processing offered in your audio editing program.
Try compressing the dynamic range of an audio file. Then try expansion. Experiment
with different attack and release times and listen to the differences.

10. Examine the types of filters offered in your audio editing program. See if your soft-
ware has a graphic equalizer, parametric EQ, paragraphic EQ, notch filters, and/or
convolution. Can you tell if they are implemented with FIR or IIR filters? What pa-
rameters do you have to set to use these filters?

1. Examine the types of reverb, echo, and delay effects available in your audio editing
program and experiment with the effects.

Additional exercises or applications may be found at the book or author’s websites.
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