
M04_BURG5802_01_SE_C04.QXD 7/3/08 5:32 PM Page 188

4.1 INTRODUCTION 190

4.2 AUDIO WAVEFORMS 191

4.3 PULSE CODE MODULATION AND
AUDIO DIGITIZATION 193

4.4 SAMPLING RATE AND ALIASING 194

4.5 QUANTIZATION AND QUANTIZATION
ERROR 200
4.5.1 Decibels and Dynamic Range 200
4.5.2 Audio Dithering 204
4.5.3 Noise Shaping 206
4.5.4 Non-Linear Quantization 208

4.6 FREQUENCY ANALYSIS 215
4.6.1 Time and Frequency Domains 215
4.6.2 The Fourier Series 217
4.6.3 The Discrete Fourier Transform 220
4.6.4 A Comparison of the DFT

and DCT 222
4.6.5 The Fast Fourier Transform 225
4.6.6 Key Points Regarding the Fourier

Transform 230

4.7 STATISTICAL ANALYSIS OF AN
AUDIO FILE 231

4.8 MIDI 233
4.8.1 MIDI Vs. Sampled Digital Audio 233
4.8.2 The MIDI Standard 234
4.8.3 How MIDI Files Are Created, Edited,

and Played 234
4.8.4 MIDI for Nonmusicians 238
4.8.5 Musical Acoustics and Notation 238
4.8.6 Features of MIDI Sequencers

and Keyboards 241
4.8.7 MIDI Behind the Scenes 244

CHAPTER

Digital Audio
Representation

Exercises and Programs 248 Applications 249 References 250

4
M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 189

OBJECTIVES FOR CHAPTER 4
• Understand how waveforms represent changing air pressure caused by sound.
• Be able to apply the Nyquist theorem to an understanding of digital audio

aliasing.
• Given a sampling rate, be able to compute the Nyquist frequency.
• Given the frequency of an actual sound wave, be able to compute the Nyquist

rate.
• Given a sampling rate and the frequency of an actual sound wave, be able to

compute the frequency of the resulting aliased wave if aliasing occurs.
• Understand the relationship between quantization level (i.e., sample size or bit

depth) to dynamic range of an audio file.
• Given air pressure amplitude for a sound, be able to compute decibels, and vice

versa.
• Given a bit depth for digital audio, be able to compute the signal-to-quantization

noise ratio assuming linear quantization.
• Understand how dithering is done and be able to choose an appropriate audio

dithering function.
• Understand how noise shaping is done.
• Understand the algorithm and mathematics for -law encoding.
• Understand the application and implementation of the Fourier transform for digital

audio processing.
• Be able to read and interpret a histogram of a waveform.
• Be able to compute the RMS (root-mean-square) power of a digital audio wave.
• Understand the information provided in a frequency or spectral analysis of an

audio wave.
• Understand the difference between the formats of MIDI and digital audio sound

files.
• Become familiar with basic terminology of MIDI and related areas in musical

acoustics and musical notation.
• Be able to interpret a MIDI byte-stream, identifying status and data bytes.

4.1 INTRODUCTION
As we introduce each new medium in this book, we place the concepts in context. Why
would you want or need to know the mathematical and scientific concepts covered in the
next two chapters on digital audio? What work might you be doing that is based on these
concepts?

You may find yourself working with digital audio in a variety of situations. You may
want to be able to digitally record and edit music, combining instruments and voices. You
may want to edit the sound track for a digital video. You may be doing game programming

m

Take care of the sense, and the sounds will take
care of themselves. —Lewis Carroll, Alice’s
Adventures in Wonderland4

CHAPTER

190

M04_BURG5802_01_SE_C04.QXD 7/3/08 5:32 PM Page 190

4.2 Audio Waveforms 191

and want to create sound effects, voice, and musical accompaniment for the game. You
may work in the theater designing the sound to be used in the performance of a play or
dance.

Working with digital audio in these applications entails recording sound, choosing the
appropriate sampling rate and sample size for a recording, knowing the microphones to use
for your conditions, choosing a sound card and editing software for recording and editing,
taking out the imperfections in recorded audio, processing with special effects, compress-
ing, and selecting the right file type for storage.

In this chapter, we’ll begin with the basic concepts underlying digital audio repre-
sentation. In Chapter 5 we’ll talk about how to apply these concepts in digital audio
processing.

4.2 AUDIO WAVEFORMS
The notion of a sound wave is something you’ve probably become comfortable with be-
cause you encounter it in so many everyday contexts. But unless you’ve had to study it in a
high school or college physics course, you might assume that you understand the sense in
which sound is a “wave,” when really you may never have thought about it very closely. So
let’s check your understanding, just to be sure.

A good way to understand sound waves is to picture how they act on microphones.
There are many kinds of microphones, divided for our purposes into two main categories
of electrodynamic and electrostatic types. Electrodynamic microphones (also called simply
dynamic microphones) operate by means of a moving coil or band (Figure 4.1).
Electrostatic microphones (also called condenser or capacitor microphones) are based on
capacitors that require an external power supply. Both function according to the same prin-
ciple, which is that changing air pressure produced by sound waves causes the parts inside
the microphone to react, and this reaction can be recorded as a “wave.” For illustration
of the nature of a sound wave, let’s use an electrodynamic microphone, since it’s easy to
picture how it works.

Diaphragm

Coil

Magnet

C
ur

re
nt

Sound waves

Figure 4.1 The diaphragm of an
electrodynamic microphone

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 191

192 Chapter 4 Digital Audio Representation

Imagine that a single note is played on a piano, and a microphone is placed close to the
piano to pick up the sound. A hammer inside the piano’s mechanism strikes a string, vibrat-
ing the string. The string’s vibrations “push” on the air molecules next to it, causing them
alternately to move closer together and then farther apart in a regularly repeating pattern.
When air molecules are squeezed together, air pressure rises. When they move apart, air
pressure falls. These changes in air pressure are propagated through space. It’s just like
what happens when you splash in the water at the edge of a pool. The wave ripples through
the pool as the water molecules move back and forth.

So how does this sound wave affect the microphone? The basic component of an elec-
trodynamic microphone is a coil of wire wound in the microphone’s diaphragm in the
presence of a magnetic field. (The diaphragm is the place in a microphone that detects the
air vibrations and responds.) If a wire moves in the environment of a magnetic field, a cur-
rent is induced in the wire. This is what happens when the changes in air pressure reach
the wire—the wire moves, and an electrical current proportional to the movement of the
wire is created. The electrical current oscillates along with the vibrations of the piano
string. The changes in current can be recorded as continuously changing voltages. If you
draw a graph of how the voltages change, what you’re drawing is the sound wave pro-
duced by the striking of the piano key. In essence, the changing voltages model how air
pressure changes over time in response to some vibration, changes that are perceived by
the human ear as sound.

Physically, the changing air pressure caused by sound is translated into changing volt-
ages. Mathematically, the fluctuating pressure can be modeled as continuously changing
numbers—a function where time is the input variable and amplitude (of air pressure or
voltage) is the output. Graphing this function with time on the horizontal axis and ampli-
tude on the vertical axis, we have the one-dimensional waveform commonly associated
with sound. If the sound is a single-pitch tone with no overtones, the graph will be a single-
frequency sinusoidal wave. The wave corresponding to the note A on the piano (440 Hz) is
shown in Figure 4.2. Few sounds come to us as single-pitch tones. Even the single spoken
word “boo” is a complex waveform, as shown in Figure 1.16.

You saw in Chapter 2 that an image can mathematically be formulated as the sum of its
frequency components in two dimensions, horizontally and vertically over space. A complex

Figure 4.2 Waveform view of the note A, 440 Hz (from Audacity)

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 192

4.3 Pulse Code Modulation and Audio Digitization 193

sound wave can be formulated as a sum of its frequency components in one dimension, over
time. Later in this chapter, you’ll see how the transformation from the time domain to the fre-
quency domain is done with the Fourier transform. For now, let’s look at different views of
a waveform that give you information about the sound in either the time or the frequency
domain.

Figure 4.2 is a waveform view from an audio processing program. A waveform view
shows the sound wave with time on the horizontal axis and amplitude on the vertical axis,
as shown in the figure above. You may be able change the units on the axes. The vertical
axis might be shown in decibels (specifically, dBFS, explained below), sample values,
percentages, or normalized values. The horizontal axis might be shown as mm:ss:ddd
(i.e., minutes, seconds, and fractions of seconds to the thousandths), sample numbers, or
different SMPTE (Society of Motion Picture and Television Engineers) formats.

4.3 PULSE CODE MODULATION
AND AUDIO DIGITIZATION

Algorithms for sound digitization date back farther than you might imagine. Pulse code
modulation (PCM) is a term that you’ll encounter frequently as you read about digital
audio. The term has been around for a long time—since it was first invented in 1937 by
Alec Reeves, who at that time worked for International Telephone and Telegraph. PCM
is based on the methods of sampling and quantization applied to sound. However, when
Reeves devised this method in 1937, his focus was on the
transmission of audio signals—the emphasis being on the word
modulation. (See Chapters 1 and 6 for more on modulation tech-
niques.) Reeves proposed an alternative to analog-based fre-
quency and amplitude modulation: that signals be sampled at dis-
crete points in time, each sample be quantized and encoded in
binary, and the bits be transmitted as pulses representing 0s and
1s. It sounds familiar, doesn’t it? When you realize that 1937 pre-
dates the advent of digital audio as we know it today, you realize
how far ahead of his time Reeves was. The term PCM is still used
in digital audio to refer to the sampling and quantization process.
In fact, PCM files are files that are digitized but not compressed.
When you want to save your files in “raw” version, you can save
them as PCM files.

When you create a new audio file in a digital audio process-
ing program, you are asked to choose the sampling rate and bit
depth. Audio sampling rates are measured in cycles per second,
designated in units of Hertz. In the past, the most common choices
were 8000 Hz mono for telephone quality voice, or 44.1 kHz
two-channel stereo with 16 bits per channel for CD-quality
sound. Digital audio tape (DAT) format uses a sampling rate of
48 kHz. Now higher sampling rates and bit depths have become
more common (e.g., sampling rates of 96 or 192 kHz for two-
channel stereo DVD with 24 bits per channel). In general, your

ASIDE: A number of bit-saving alternatives
to PCM have been devised, especially in the
field of telephony, where compressing the signal
is important for preserving bandwidth. Statisti-
cally based methods rely on the characteristic
nature of voice signals. Because the amplitudes
of sounds in human speech do not change dra-
matically from one moment to the next, it’s pos-
sible to reduce the bit depth by recording only
the difference between one sample and the suc-
ceeding one. This is called differential pulse
code modulation (DPCM). The algorithm can be
fine-tuned so that the quantization level varies
in accordance with the dynamically changing
characteristics of the speech pattern, yielding
better compression rates. This is called adaptive
differential pulse-code modulation (ADPCM).

ASIDE: In the context of digital audio, the bit
depth is sometimes referred to as resolution,
which is a little confusing because in digital im-
aging resolution relates to sampling rate.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 193

Supplement audio
processing
programs:

hands-on
worksheet

WorkingWithAudio.pdf

194 Chapter 4 Digital Audio Representation

sampling rate and bit depth should match that of other audio clips with which you
might be mixing the current one. They should also be appropriate for the type of sound
you’re recording, the storage capacity of the medium on which the audio will be stored,
and the sensitivity of the equipment on which it will be played. You may sometimes
want to use a higher sampling rate than you will ultimately need so that less error is
introduced if you add special effects. Sometimes 32-bit samples are used initially for
greater accuracy during sound processing, after which the audio can be downsampled
to 16 bits before compression. Most good audio processing programs do this automati-
cally, behind the scenes. This is why it is recommended that you use dither on your out-
put even if you’re working with a 16-bit file and saving it as 16 bits. Even though you,
the user, may not be doing any bit depth conversions, the software might be behind the
scenes.

The concepts of sampling rate and bit depth that you find in digital imaging carry over
to digital audio processing as well. Just as was true with digital imaging, the sampling rate
for digital audio must obey the Nyquist theorem, meaning that it must be at least twice the
frequency of the highest frequency component in the audio being captured. The bit depth
puts a limit on the precision with which you can represent each sample, determining the
signal-to-quantization-noise ratio and dynamic range. In the next sections, we’ll examine
these issues closely as they apply to digital audio representation.

4.4 SAMPLING RATE AND ALIASING
There are two related, but not synonymous, terms used with regard to the Nyquist theorem:
Nyquist frequency and Nyquist rate. Given a sampling rate, the Nyquist frequency is the
highest actual frequency component that can be sampled at the given rate without aliasing.
Based on the Nyquist theorem, the Nyquist frequency is half the given sampling rate. For
example, if you choose to take samples at a rate of 8000 Hz (i.e., 8000 samples/s), then
the Nyquist frequency is 4000 Hz. This means that if the sound you’re digitizing has a fre-
quency component greater than 4000 Hz, then that component will be aliased—that is, it
will sound lower in pitch than it should.

Given an actual frequency to be sampled, the Nyquist rate is the lowest sampling rate
that will permit accurate reconstruction of an analog digital signal. The Nyquist theorem
tells us that the Nyquist rate is twice the frequency of the highest frequency component
in the signal being sampled. For example, if the highest frequency component is 10,000 Hz,
then the Nyquist rate is 20,000 Hz. The two terms are summarized in the key equations
below. (Unfortunately, some sources incorrectly use Nyquist frequency and Nyquist rate
interchangeably.)

KEY EQUATION

Given , the frequency of the highest-frequency component in an audio
signal to be sampled, then the Nyquist rate, , is defined as

fnr = 2fmax

fnr

fmax

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 194

The main point is that when you’re digitizing an analog audio wave and your sampling rate
is below the Nyquist rate, audio aliasing will occur. That is, when the digitized sound is
played, the frequency from the original sound will be translated to a different frequency, so
the digitized sound doesn’t sound exactly like the original. Let’s look at how this happens, be-
ginning with single-frequency waves, from which we can generalize to waves with more than
one frequency component.

In essence, the reason a too-low sampling rate results in aliasing
is that there aren’t enough sample points from which to accurately
interpolate the sinusoidal form of the original wave. If we take more
than two samples per cycle on an analog wave, the wave can be pre-
cisely reconstructed from the samples, as shown in Figure 4.3. In
this example, the wave being sampled has a frequency of 637 Hz,
which is 637 cycles/s. This means that we need to sample it at a
Nyquist rate of at least 1274 samples/s (i.e., 1274 Hz). The black
dots on the figure show where the samples are taken, at a rate of
1490 Hz, greater than the Nyquist rate. No aliasing occurs when the
wave is reconstructed from the samples because there is sufficient
information to reconstruct the wave’s sinusoidal form.

KEY EQUATION

Given a sampling frequency to be used to sample an audio signal, then
the Nyquist frequency, , is defined as

fnf =
1

2
fsamp

fnf

fsamp

0 5 10 15 20 25
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Time (milliseconds)
Figure 4.3 Samples taken more than twice per
cycle will provide sufficient information to re-
produced the wave with no aliasing

ASIDE: The example where samples are taken
exactly twice per cycle illustrates why there is
some confusion in the literature over the defini-
tion of the Nyquist rate. The Nyquist rate is
sometimes defined as “at least twice the actual
frequency of the highest frequency component”
and sometimes as “greater than twice the actual
frequency of the highest frequency component.”
Sampling at exactly twice the frequency of the
highest-frequency component can work but isn’t
guaranteed to work, as shown in the example.

4.4 Sampling Rate and Aliasing 195

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 195

196 Chapter 4 Digital Audio Representation

0 5 10 15 20 25
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Time (milliseconds)
Figure 4.5 A 637 Hz wave sampled at 1000 Hz
aliases to 363 Hz

0 2 4 6 8 10 12 14 16 18 20
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Time (milliseconds)
Figure 4.4 Samples taken exactly twice per cycle
can be sufficient for digitizing the original with no
aliasing

0 5 10 15 20 25
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Time (milliseconds)

Figure 4.6 A 637 Hz wave sampled at 500 Hz
aliases to 137 Hz

If we have exactly two samples per cycle and the samples are taken at precisely the max-
imum and minimum values of the sine wave, once again the digitized wave can be recon-
structed, as shown in Figure 4.4. However, if the samples are taken at locations other than
peaks and troughs, the frequency may be correct but the amplitude incorrect. In fact, the
amplitude can be 0 if samples are always taken at 0 points.

A wave sampled fewer than two times per cycle cannot be accurately reproduced. In
Figure 4.5, we see the result of sampling a 637 Hz wave at 1000 Hz, resulting in an aliased
wave of 363 Hz. The inadequate sampling rate skips over some of the cycles, making it
appear that the frequency of the actual wave is lower than it really is. (The actual frequency
is the sine wave drawn with the dashed line in the background.)

Figure 4.6 shows a 637 Hz wave sampled at 500 Hz. Again, the sampling rate is below
the Nyquist rate. In this case, the aliased wave has a frequency of 137 Hz.

Figure 4.7 shows a 637 Hz wave sampled at 400 Hz, yielding an aliased wave at
163 Hz.

Supplements on
audio aliasing:

interactive tutorial

worksheet

mathematical
modeling
worksheet

Σ

eiθ

θ

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 196

AudioAliasing.htm
AudioAliasingWorksheet.pdf
ModelingAliasing.pdf

4.4 Sampling Rate and Aliasing 197

0 5 10 15 20 25
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

Time (milliseconds)

A
m

pl
itu

de

Figure 4.7 A 637 Hz wave sampled at 400 Hz
aliases to 163 Hz

ALGORITHM 4.1

algorithm get_frequency
*Input: Frequency of the analog audio wave (a single tone)

to be sampled, f_act
Sampling frequency, f_samp

Output: Frequency of the digitized audio wave, f_obs*
{

f_nf � f_samp

f_nf is the Nyquist frequency
CASE 1

if (f_act f_nf) then
f_obs f_act

CASE 2
else if (f_nf f_act f_samp) then

f_obs f_samp f_act
else {

INT � f_act�f_nf �* integer division *�
REM � f_act mod f_nf

�*CASE 3*�
if (INT is even) then

f_obs � REM
�*CASE 4*�

else if (INT is odd) then
f_obs � f_nf � REM

}
}

-=
…6

>> =
…
>> >>

1

2

>

>

Algorithm 4.1 shows how to compute the frequency of the aliased wave where aliasing
occurs. Let’s do an example of cases 2, 3, and 4.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 197

198 Chapter 4 Digital Audio Representation

Case 2:
f_act � 637 Hz; f_samp � 1000 Hz; thus f_nf � 500 Hz
f_nf � f_act � f_samp
Therefore, f_obs � f_samp � f_act � 363 Hz
(See Figure 4.5.)

Case 3:
f_act � 637 Hz; f_samp � 500 Hz; thus f_nf � 250 Hz
f_act � f_samp
INT � f_act�f_nf � 637�250 � 2
(Note: � is integer division, which means throw away the remainder)
INT is even
REM � f_act mod f_nf � 137
(Note: mod saves only the remainder from the division)
Therefore, f_obs � REM � 137 Hz
(See Figure 4.6.)

Case 4:
f_act � 637 Hz; f_samp � 400 Hz; thus f_nf � 200 Hz
f_act � f_samp
INT � f_act�f_nf � 637�200 � 3
INT is odd
REM � f_act mod f_nf � 37
Therefore, f_obs � f_nf � REM � 200 � 37 � 163 Hz
(See Figure 4.7.)

It may be helpful to get a sense of how the algorithm works by looking at it as a func-
tion with one independent variable and graphing it. Assume that f_samp is given as a con-
stant, f_act is the input to the function, and f_obs is the output. The function is graphed in
Figure 4.8. A graph such as this can be drawn for any given sampling rate. Along the hor-
izontal axis you have f_act, and along the vertical axis you have f_obs. The four cases of
the algorithm always lie along the same parts of the graph: Case 1 is along the upward slope
of the first triangle, case 2 on the downward slope of the first triangle, case 3 on the upward
slope of any succeeding triangle, and case 4 on the downward slope of any succeeding tri-
angle. All the triangles peak at f_obs � f_nf. The sampling rate is fixed for a particular

graph, and it determines the Nyquist frequency. That is, f_nf � f_samp tells you the

highest frequency that can be sampled at the given sampling rate without aliasing. Once
you have fixed the sampling rate and corresponding Nyquist frequency and drawn the
graph, you can consider any actual frequency f_act and predict what its corresponding
observed frequency f_obs will be given the sampling rate f_samp.

A different graph can be drawn by fixing the actual frequency of a sound wave and
graphing the observed frequency as a function of the sampling rate. As long as the sam-
pling rate is below the Nyquist rate, the observed frequency will always be less than the
actual frequency. This is shown in Figure 4.9.

Audio editing programs allow you to resample audio files. You sometimes may want to
do this to lower the sampling rate and reduce the file size. As you have seen, using a lower

1

2

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 198

4.4 Sampling Rate and Aliasing 199

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

700

800

900

1000

f_
ob

s
(o

bs
er

ve
d

fr
eq

ue
nc

y)

f_nf = 745 f_samp = 1490

C
as

e
1 C

ase 2 C
as

e
3 C

ase 4

f_act = 637

Observed frequency of 637 Hz = actual frequency

f_act (actual frequency)
C

as
e

3

C
as

e
3 C

ase 4

C
ase 4

Figure 4.8 The relationships among sampling rate, actual
frequency, and observed frequency when fsamp = 1490

sampling rate may introduce aliased frequencies. However, audio editing programs have
filters that will eliminate the high frequency components before resampling in order to
avoid aliasing. You should look for these options when you work with your sound files. Fil-
tering is also done in hardware analog-to-digital converters to avoid aliasing when a digital
recording is made.

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900

1000

1100

f_samp (sampling frequency)

f_
ob

s
(o

bs
er

ve
d

fr
eq

ue
nc

y)

Figure 4.9 Graph of aliasing function with fixed actual frequency
of 1000 Hz

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 199

200 Chapter 4 Digital Audio Representation

KEY EQUATION

Let E be the pressure amplitude of the sound being measured and be the
sound pressure level of the threshold of hearing. Then decibels-sound-pressure-level,
(dB_SPL) is defined as

dB–SPL = 20 log10a E

E0
b

E0

4.5 QUANTIZATION AND QUANTIZATION ERROR

4.5.1 Decibels and Dynamic Range
As you have seen in the previous section, sampling rate relates directly to the frequency of
a wave. Quantization, on the other hand, relates more closely to the amplitude of a sound
wave. Amplitude measures the intensity of the sound and is related to its perceived loudness.
It can be measured with a variety of units, including voltages, newtons/m2, or the unitless
measure called decibels. To understand decibels it helps to consider first how amplitude can
be measured in terms of air pressure.

In Chapter 1, we described how a vibrating object pushes molecules closer together, creating
changes in air pressure. Since this movement is the basis of sound, it makes sense to measure
the loudness of a sound in terms of air pressure changes. Atmospheric pressure is customarily
measured in pascals (newtons/meter2) (abbreviated Pa or N/m2). The average atmospheric pres-
sure at sea level is approximately 105 Pa. For sound waves, air pressure amplitude is defined as
the average deviation from normal background atmospheric air pressure. For example, the
threshold of human hearing (for a 1000 Hz sound wave) varies from the normal background at-
mospheric air pressure by , so this is its pressure amplitude.

Measuring sound in terms of pressure amplitude is intuitively easy to understand, but in
practice decibels are a more common, and in many ways a more convenient, way to measure
sound amplitude. Decibels can be used to measure many things in physics, optics, electron-
ics, and signal processing. A decibel is not an absolute unit of measurement. A decibel is
always based upon some agreed-upon reference point, and the reference point varies ac-
cording to the phenomenon being measured. In networks, for example, decibels can be
used to measure the attenuation of a signal across the transmission medium. The reference
point is the strength of the original signal, and decibels describe how much of the signal is
lost relative to its original strength. For sound, the reference point is the air pressure ampli-
tude for the threshold of hearing. A decibel in the context of sound pressure level is called
decibels-sound-pressure-level (dB_SPL).

2 * 10-5 Pa

Often, this is abbreviated simply as dB, but since decibels are always relative, it is helpful
to indicate the reference point if the context is not clear. With this use of decibels, , the
threshold of hearing, is the point of comparison for the sound being measured.

Given a value for the air pressure amplitude, you can compute the amplitude of sound in
decibels with the equation above. For example, what would be the amplitude of the audio
threshold of pain, given as ?

dB–SPL = 20 log10a 30 Pa

0.00002 Pa
b = 20 log10(1500000) = 20 * 6.17 L 123

30 Pa

E0

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 200

4.5 Quantization and Quantization Error 201

Thus, , the threshold of pain, is approximately equal to 123 decibels. (The
threshold of pain varies with frequency and with individual perception.) You can also
compute the pressure amplitude given the decibels. For example, what would be the pres-
sure amplitude of normal conversation, given as 60 dB?

Thus, 60 dB is approximately equal to .
Decibels can also be used to describe sound intensity (as opposed to sound pressure am-

plitude). Decibels-sound-intensity-level (dB_SIL) is defined as .

is the intensity of sound at the threshold of hearing, given as . (W is watts.)
It is sometimes more convenient to work with intensity decibels rather than pressure ampli-
tude decibels, but essentially the two give the same information. The relationship between
the two lies in the relationship between pressure (potential in volts) and intensity (power in
watts). In this respect, I is proportional to the square of E (discussed in Chapter 1).

Decibels-sound-pressure-level are an appropriate unit for measuring sound because the
values increase logarithmically rather than linearly. This is a better match for the way hu-
mans perceive sound. For example, a voice at normal conversation level could be 100 times
the air pressure amplitude of a soft whisper, but to human perception it seems only about
16 times louder. Decibels are scaled to account for the nonlinear nature of human sound
perception. Table 4.1 gives the decibels of some common sounds. The values in Table 4.1
vary with the frequency of the sound and with individual hearing ability.

10-12 W/m2I0

dB–SPL = 10 log10a I

I0
b

0.02 Pa

 x = 0.02 Pa

1000

50000
Pa = x

 103 =

50000x

Pa

 3 = log10a 50000x

Pa
b

 60 = 20 log10a 50000x

Pa
b

 60 = 20 log10a x

0.00002 Pa
b

30 N/m2

TABLE 4.1 Approximate Decibel Levels of Common Sounds

Sound Decibels (dB_SPL)
Threshold of hearing 0

Rustling leaves 20

Conversation 60–70

Jackhammer 100 (or more)

Threshold of pain 130

Damage to eardrum 160

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 201

202 Chapter 4 Digital Audio Representation

KEY EQUATION

Let n be the bit depth of a digital audio file. Then the dynamic range of the
audio file, d, in decibels, is defined as

d = 20n log10(2) L 6n

Experimentally, it has been determined that if you increase the amplitude of an audio
recording by 10 dB, it will sound about twice as loud. (Of course, these perceived differ-
ences are subjective.) For most humans, a 3 dB change in amplitude is the smallest percep-
tible change.

While an insufficient sampling rate can lead to aliasing, an insufficient bit depth can cre-
ate distortion, also referred to as quantization noise. In Chapter 1, we showed that signal-to-
quantization-noise-ratio, SQNR, is defined as where n is the bit
depth of a digital file. This can be applied to digital sound and related to the concept of
dynamic range. Dynamic range is the ratio between the smallest nonzero value, which is 1,
and the largest, which is 2n. For an n-bit file, the ratio, expressed in decibels, is then

. Thus, the definition is identical to the definition of SQNR,

and this is why you see the terms SQNR and dynamic range sometimes used inter-
changeably.

We can simplify even further by taking which is about 0.30103,
and multiplying by 20.

log10(2),20n log10(2)

20 log10a2n

1
b = 20n log10(2)

SQNR = 20 log10(2n)

As a rule of thumb you can estimate that an n-bit digital audio file has a dynamic range
(or, equivalently, a signal-to-noise-ratio) of 6n dB. For example, a 16-bit digital audio file
has a dynamic range of about 96 dB, while an 8-bit digital audio file has a range of about
48 dB.

Be careful not to interpret this to mean that a 16-bit file allows louder amplitudes than
an 8-bit file. Rather, dynamic range gives you a measure of the range of amplitudes that can
be captured relative to the loss of fidelity compared to the original sound. Dynamic range
is a relative measurement—the relative difference between the loudest and softest parts
representable in a digital audio file, as a function of the bit depth.

There is a second way in which the term dynamic range is used. We’ve defined it as it
applies to any file of a given bit depth. The term can also be applied to a particular audio
piece, not related to bit depth. (In this usage, you don’t even have to be talking about digital
audio.) A particular piece of music can be said to have a wide dynamic range if there’s a
big difference between the loudest and softest parts of the piece. Symphonic classical
music typically has a wide dynamic range. “Elevator music” is produced so that it doesn’t
have a wide dynamic range, and can lie in the background unobtrusively.

Let’s return to the term decibels now. You’ll find another variation of decibels when
you use audio processing programs, where you may have the option of choosing the units
for sample values. Units are shown on the vertical axes in the waveforms of Figure 4.10.
On the left, we’ve chosen the sample units view. On the right, we’ve chosen the decibels
view. However, the decibels being displayed are decibels-full-scale (dBFS) rather than the
decibels-sound-pressure-level defined above.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 202

4.5 Quantization and Quantization Error 203

The idea behind dBFS is that it makes sense to use the maximum possible amplitude as
a fixed reference point and move down from there. There exists some maximum audio
amplitude that can be generated by the system on which the audio processing program is
being run. Because this maximum is a function of the system and not of a particular audio
file, it is the same for all files and does not vary with bit depth. This maximum is given the
value 0. When you look at a waveform with amplitude given in dBFS, the horizontal cen-
ter of the waveform is dBFS, and above and below this axis the values progress to the
maximum of 0 dBFS. This is shown in the window on the right in Figure 4.10. The bit
depth of each audio file determines how much lower you can go below the maximum am-
plitude before the sample value is reduced to 0.

- q

Figure 4.10 Measuring amplitude in samples or decibels (from Audition)
Units are samples in top window, decibels in bottom window

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 203

Try the definition of dBFS on a number of values, using . You’ll find that a sam-
ple value of -32768 maps to 0, the maximum amplitude possible for the system; 10,000
maps to -10.3; 1 maps to -90.3; and 0.5 maps to -96.3296. These values are consistent
with what you learned about dynamic range. A 16-bit audio file has a dynamic range of
about 96 decibels. Any samples that map to decibel values that are more than 96 decibels
below the maximum possible amplitude effectively are lost as silence.

4.5.2 Audio Dithering
Audio dithering is a way to compensate for quantization error. Surprisingly, the way to do
this is to add small random values to samples in order to mask quantization error. The
rounding inherent in quantization causes a problem in that at low amplitudes, many values
may be rounded down to 0. Since 0 is simply silence, this can cause noticeable breaks in
the sound. If small random values between 0 and the least significant bit (on the scale of the
new bit depth) are added to the signal before it is quantized, some of the samples that would
have been lost will no longer fall to 0. Adding a little bit of noise to the signal is preferable
to having discontinuities of silence.

Dithering is customarily performed by analog-to-digital converters before the quantiza-
tion step. You’ll also encounter the dithering option if you decide to reduce the bit depth of
an audio file. If you know how audio dithering works, you’ll know what effect it will have
and you’ll be able to make a more informed choice of a dithering function.

A good way to understand the effect that quantization error has on sound is to look at it
graphically. Figure 4.11 shows a continuous waveform, the wave quantized to 16 quantiza-
tion levels, and the quantization error wave. Note that the original wave plus the error wave
equals the quantized wave. The error wave constitutes another sound component that can
be heard as a distortion of the signal.

Although in the previous section we used the term noise with regard to quantization
error, distortion is really more accurate. Notice that the error waveform is periodic; that is,

it repeats in a regular pattern, and its period is related to the period
of the original wave. This is the distinction that some sources make
between distortion and noise. Noise is random, while distortion
sounds meaningful even though it is not. For this reason, distortion
can be more distracting in an audio signal than noise. The distortion
wave moves in a pattern along with the original wave and thus, to
human hearing, it seems to be a meaningful part of the sound. It is

n = 16

204 Chapter 4 Digital Audio Representation

ASIDE: The term signal-to-noise ratio is
widely used with regard to quantization error,
but this type of noise might more correctly be
called distortion. However, not all sources make
a distinction between distortion and noise.

Supplements on
audio dithering:

interactive tutorial

mathematical
modeling
worksheet

Σ

eiθ

θ

KEY EQUATION

Let x be an n-bit audio sample in the range of . Then
x’s value expressed as decibels-full-scale, dBFS, is

dBFS = 20 log10a |x|

2n-1 b

-2n-1 … x … 2n-1 - 1

This is the basis for the definition of dBFS, which measures amplitude values relative to
the maximum possible value. For n-bit samples, dBFS is defined as follows:

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 204

AudioDithering.htm
AudioDithering.zip

easier for the human brain to tune out noise because it seems to have no logical relationship
to the dominant patterns of the sound.

It may be counterintuitive to understand that artificially introducing noise (the random
kind) can actually have a helpful effect on sound that is quantized in an insufficient number
of bits, but it’s possible to add noise to a quantized audio wave in a way that reduces the ef-
fects of distortion. Imagine that we add between –1 and 1 unit, on the scale of the reduced bit
depth, to each sample. The exact amount, x, to be added to the sample could be determined at
random by a triangular probability density function (TPDF). The function, shown in
Figure 4.12, indicates that there is the greatest probability that 0 will be added to a sample. As
x goes from 0 to 1 (and symmetrically as x goes from 0 to -1), the probability that x is the value
to be added to a sample decreases. (A simple way to generate values for a triangular probabil-
ity density function is to take the sum of two random numbers between -0.5 and 0.5.)

4.5 Quantization and Quantization Error 205

0 1 2 3 4 5 6

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0 Sine wave
Quantized sine wave
Error wave

Figure 4.11 Original wave (the sine wave), quantized sine
wave, and quantization error wave

Adding this random noise to the original wave eliminates the sharp stairstep effect in the
quantized signal. Instead, the quantized wave jumps back and forth between two neighbor-
ing quantization levels. Another advantage is that with the addition of the small random
value, there aren’t as many neighboring low-amplitude values that are rounded to 0 when
they are quantized. Neighboring low-amplitude values that become 0 in quantization create
disturbing breaks in the audio. (You would be able to picture this better in an actual music
audio clip than in the simple waveform pictured in Figure 4.11.)

–1 0 1
Amount to add to sample

Pr
ob

ab
ili

ty

Figure 4.12 Triangular probability function

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 205

206 Chapter 4 Digital Audio Representation

0 100 200 300 400 500 600

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

Figure 4.13 Quantized sine wave, dithered quantized wave, and
(along horizontal axis) error wave including dithering

Figure 4.13 shows dithering with the triangular dithering function, which produces ran-
dom values between -1 and 1. (It’s assumed in this figure that the signal is originally at a
bit depth of 16 and is being reduced to a bit depth of four. A bit depth of four is unrealisti-
cally low but serves to illustrate the effect.) The dithered wave in the figure represents the
original quantized wave to which the dither function has been added. The resulting dithered
wave generally has fewer disturbing audio artifacts than the undithered wave does. By
“artifacts,” we mean areas where the sound breaks up or goes to silence.

Other dithering functions include the rectangular probability density function (RPDF),
the Gaussian PDF, and colored dithering. The RPDF generates random numbers such that
all numbers in the selected range have the same probability of being generated. While the
TPDF randomly generates numbers within a range of two units (e.g., �1 to �1), the RPDF
works better if numbers are chosen in a range of 1 unit (e.g., 0 to 1). The Gaussian PDF is
like the TPDF except that it weights the probabilities according to a Gaussian rather than a
triangular shape. Gaussian dither creates noise that resembles common environmental
noises, like tape hiss. Colored dithering produces noise that is primarily in higher frequen-
cies rather than in the frequencies of human hearing. It’s best to apply colored dithering
only if no more audio processing will be done, since the noise it generates can be amplified
by other effects applied afterwards. The TPDF is best to use when the audio file will be
undergoing more processing.

4.5.3 Noise Shaping
Noise shaping is another way to compensate for the quantization error. It is an important
component in the design of analog-to-digital and digital-to-analog converters. You can also
opt to use noise shaping in conjunction with dithering if you reduce the bit depth of an audio

Supplement on
noise shaping:

mathematical
modeling
worksheet

Σ

eiθ

θ

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 206

NoiseShaping.zip

4.5 Quantization and Quantization Error 207

file. Noise shaping is not dithering, but it is often used along with dithering. The idea behind
noise shaping is to redistribute the quantization error so that the noise is concentrated in the
higher frequencies, where human hearing is less sensitive. Noise shaping algorithms, first
developed by Cutler in the 1950s, work by computing the error that results from quantizing
the ith sample and adding this error to the next sample, before that next sample is itself quan-
tized. Say that you have an array F of audio samples. Consider the following definition of a
first-order feedback loop for noise shaping:

KEY EQUATIONS

Let F_in be an array of N digital audio samples that are to be quantized,
dithered, and noise shaped, yielding F_out. For , define the following:

is the ith sample value, not yet quantized.

Di is a random dithering value added to the ith sample.

The assignment statement dithers and noise shapes the
sample. Subsequently, quantizes the sample.

Ei is the error resulting from quantizing the ith sample after dithering and noise shaping.

For

Equation 4.1

i = -1, Ei = 0. Otherwise, Ei = F–ini - F–outi.

F–outi = :F– ini;
F– ini = F– ini + Di + cEi-1

F– ini

0 … i … N - 1

Let’s try an example.
Assume that audio is being recorded in 8 bit samples. On the scale of 8 bits, sound am-

plitudes can take any value between �128 and 128. (These values do not become integers
between �128 and 127 until after quantization.)

Say that , , , , and Then

To understand the benefit of noise shaping, think about the frequency spectrum of quan-
tization noise—that is, the range of the frequency components—when noise shaping is not
used. Quantization noise is part of the original audio signal in the sense that it shares the
original signal’s sampling rate, and thus its frequency components are spread out over the
same range. By the Nyquist theorem, the highest valid frequency component is half the fre-
quency of the sampling rate, and without noise shaping, this is where the frequency com-
ponents of the quantization noise lie. If we filter out frequencies above the Nyquist fre-
quency, we’re not losing anything we care about in the sound. The more of the noise’s
frequency components we can move above the Nyquist frequency, the better. This is what

F– in0 = F– in0 + D0 + cE-1 = 68.2 + 0.9 + 0 = 69.1
F–out1 = :F– in0 ; = 69

E0 = F– in0 - F–out0 = 69.1 - 69 = 0.1

F– in1 = F– in1 + D1 + cE0 = 70.4 - 0.6 + 0.1 = 69.9
F–out = :F– in0 ; = 69

E1 = F– in1 - F–out1 = 69.9 - 69 = 0.9

c = 1.D1 = -0.6D0 = 0.9F– in1 = 70.4F– in0 = 68.2

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 207

208 Chapter 4 Digital Audio Representation

noise shaping does. The idea is that if the error from dithering and quantizing is larger
than the previous one, then the error for ought to be smaller for . Making the error
wave go up and down rapidly has the effect of moving the error wave to a higher frequency.
The feedback loop inherent in noise shaping has the effect of spreading out the noise’s fre-
quency components over a broader band so that more of them are at high levels and can be
filtered out.

The term shaping is used because you can manipulate the “shape” of the noise by ma-
nipulating the noise shaping equations, adding more error terms and using different multi-
pliers for the error terms. The general statement for an nth order noise shaper noise shap-
ing equation becomes
The coefficients of the error terms can be used to control the frequencies generated. Ninth-
order noise shapers are not uncommon. The POW-r noise shaping algorithm, for example,
uses a 9th order formula to requantize audio from 24 to 16 bits.

When you reduce the bit depth of an audio file in an audio processing program, you’re
given the options of using noise shaping along with dithering. Both operations reduce the
negative effects of noise, but they do it in different ways. Recall from the previous section
that some sources make a distinction between distortion and noise. Distortion is a certain
kind of noise—noise that is correlated with the original signal, in that its frequency pattern
follows the frequency pattern of the signal. Noise shaping doesn’t do anything to dissoci-
ate the noise’s frequency pattern from the signal, so it’s important to use dithering in con-
junction with noise shaping, not alone.

Figure 4.14 shows the effect of requantizing an audio file from 16 down to 4 bits. This
is not something you are likely to do, since there’s no reason to use so few bits, but it serves
to illustrate the effect. Three versions of the quantization error are shown, in both wave-
form and spectral views. (To generate the error wave, you just subtract the requantized
wave from the original one.) The first shows the error that is generated from requantization
with no dithering. The second shows the error that results from requantization with dither-
ing. The third shows the error that results from requantization with dithering and noise
shaping. Dithering spreads out the error pretty evenly around the frequencies. Noise shap-
ing moves the error to higher frequencies. A small clip of each wave is given on the right,
and in this view as well you can see that the frequencies increase.

Dithering and noise shaping algorithms are provided for you in audio processing pro-
grams. You are given a choice of noise shaping algorithms to use along with dithering.
These choices are associated with the sampling rate of your audio file. If your sampling rate
is less than 32 kHz, noise shaping doesn’t work very well. This is because the Nyquist fre-
quency for this sampling rate is relatively low, so even when you spread the noise across a
wider frequency band, some of it will probably still be in the range of human hearing.

4.5.4 Non-Linear Quantization
Nonlinear encoding, or companding, is an encoding method that arose from the need for
compression of telephone signals across low bandwidth lines. The word companding is
derived from the fact that this encoding scheme requires compression and then expansion.
In sketch, it works as follows:

• Take a digital signal with bit depth n and requantize it in m bits, m � n, using a non-
linear quantization method.

F–outi = F–ini + Di + ci-1Ei-1 + ci-2Ei-2 + Á + ci-nEi-n.

FiFi+1

Fi

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 208

4.5 Quantization and Quantization Error 209

0 50
Quantization error wave with no dithering

100 150 200
–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0.25

0 50 100 150 200
–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0.25

Quantization error wave with dithering

Figure 4.14 Quantization error

0 50 100 150 200
–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0.25

Quantization error wave with dithering
and noise shaping

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 209

210 Chapter 4 Digital Audio Representation

KEY EQUATION

Let x be a sample value normalized so that . Let if
x is negative and otherwise. Then the -law function (also called mu-law)
is defined by

= sign(x)a ln (1 + 255|x|)

5.5452
b for m = 255

 m(x) = sign(x)a ln(1 + m|x|)

ln (1 + m)
b

Msign(x) = 1
sign(x) = -1-1 … x 6 1

The -law function is graphed in Figure 4.15. You can see that it has a logarithmic shape.
Its effect is to provide finer-grained quantization levels at low amplitudes compared to
high.

m

• Transmit the signal.
• Expand the signal to n bits at the receiving end. Some information will be lost, since

quantization is lossy. However, nonlinear quantization lessens the error for low ampli-
tude signals as compared to linear quantization.

The nonlinear encoding method is motivated by the observation that the human auditory
system is perceptually nonuniform. Humans can perceive small differences between quiet
sounds, but as sounds get louder our ability to perceive a difference in their amplitude di-
minishes. Also, quantization error generally has more impact on low amplitudes than on
high ones. Think about why this is so. Say that your bit depth is eight. Then the quantiza-
tion levels range for sound between �128 and 127. The sound amplitudes are scaled to this
range. So that only integer values are used, values must be rounded to integers. If you
consider the percent error for individual samples, you can easily see the relatively greater
effect that a low bit depth has on low vs. high amplitude signals. A value of 0.499 rounds
down to 0, for 100% error, while a value of 126.499 rounds down to 126, for about 0.4%
error. In light of these observations, it makes sense to use more quantization levels for low
amplitude signals and fewer quantization levels for high amplitudes. This is the idea be-
hind nonlinear companding, the method used in -law and A-law encoding for telephone
transmissions.

Nonlinear companding schemes are widely used and have been standardized under
the CCITT (Comité Consulatif Internationale de Télégraphique et Téléphonique) recom-
mendations for telecommunications. In the United States and Japan, -law (also called
mu-law) encoding is the standard for compressing telephone transmissions, using a sam-
pling rate of 8000 Hz and a bit depth of only eight bits, but achieving about 12 bits of
dynamic range through the design of the compression algorithm. The equivalent standard
for the rest of the world is called A-law encoding. Let’s look more closely at -law to
understand nonlinear companding in general. The encoding method is defined by the
following function:

m

M

m

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 210

4.5 Quantization and Quantization Error 211

–1.0 –0.5 0 0.5 1.0
–1.0

–0.5

0

0.5

1.0

Figure 4.15 Logarithmic function for nonlinear audio encoding

It may be easier to visualize what this function is doing if you think in terms of sample
values rather than normalized values. Say that you begin with 16-bit audio samples with
values ranging from -32,768 to 32,767. You’re going to transmit the signal at a bit depth of
8, and expand it back to 16 bits at the receiving end.

To apply the -law function, first normalize the input values by dividing by 32,768.
Then apply the function to get m(x). Then, compute to scale the value to a bit
depth of eight. Try this with an initial 16-bit sample of 16.

Apply the -law function:

Scale to 8-bit samples:

Now let’s try an initial value of 30,037.

Apply the -law function:

Scale to 8-bit samples:

The nonlinear companding values in Table 4.2 were computed by the method just
shown. (Only positive values are shown in the table, but negatives work the same way.)
You can see the benefit of nonlinear companding versus linear requantization in this table.
Linear quantization using eight bits would create equal-sized quantization intervals—
each of them containing sample values ranging from -128 to 127. In
nonlinear companding, the quantization intervals are smaller at lower amplitudes, result-
ing in fewer small-magnitude samples being mapped to the same value. The result is
greater accuracy in the requantization at low amplitudes compared to the error you get
with linear quantization.

After compression using the -law function, samples can be transmitted in eight bits. At
the user end, they are decompressed to 16 bits with the inverse function.

m

65,536>256 = 256

:128 * 0.9844; = 125

ma 30,037

32,768
b = 0.9844m

:128 * 0.02; = 2

ma 16

32,768
b L 0.02m

:128m(x);m

Supplements on
-law encoding:

interactive tutorial

mathematical
modeling
worksheet

programming
exercise

Σ

eiθ

θ

m

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 211

Mu-Law.htm
NonlinearCompanding.pdf
MuLawProgramming.pdf

212 Chapter 4 Digital Audio Representation

TABLE 4.2 Comparison of Quantization Interval Size with Linear Requantization
and Nonlinear Companding

Linear Requantization Nonlinear Companding

Original 16-bit
Sample Values

8-bit Sample Values After
Linear Requantization

(divide by 256 and round
down to nearest integer)

Original 16-bit Sample
Values

8-bit Sample Values
After Non-linear

Companding

Number of Values
that are Mapped to

the Same Value

0–255 0 0–5 0 6

256–511 1 6–11 1 6

512–767 2 12–17 2 6
.

32,000–32,255 125 28,759–30,037 125 1,279

32,256–32,511 126 30,038–31,373 126 1,336

32,512–32,767 127 31,374–32,767 127 1,394

KEY EQUATION

Let x be a -law encoded sample normalized so that . Let
if x is negative and otherwise. Then the inverse -law func-

tion is defined by

= sign(x)a256|x| - 1

255
b for m = 255

 d(x) = sign(x)a (m + 1)|x| - 1

m
b

Msign(x) = 1sign(x) = -1
-1 … x 6 1m

Continuing our example, let’s see what happens with the sample that originally was 16.
The -law function, scaled to an 8-bit scale, yielded a value of 2. Reversing the process, we
do the following:

Apply the inverse -law function:

Scale to 16-bit samples:

We can do the same computation for the sample that originally was 30,037 and yielded a
value of 125 from the -law function.

Apply the inverse -law function:

Scale to 16-bit samples:

An original sample of value 16 became 11 at the receiving end using -law encoding, which
is an error of about 31%. An original sample of 30,037 became 28,758 at the receiving end,

m

<32,768 * 0.8776= = 28,758

da 125

128
b = 0.8776m

m

<32,768 * 0.00035= = 11

d a 2

128
b = 0.00035m

m

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 212

4.5 Quantization and Quantization Error 213

for an error of about 4%. There’s still more error at low amplitudes than at high, but the sit-
uation is improved over the error you would get with linear quantization.

Think about how you might reduce the bit depth for transmission if you simply divided
by 256 and rounded the values, as shown below. Say that we use for
lowering the bit depth (compression) and for expanding the bit depth back
again (decompression).

Assuming that this is how you would do linear requantization, Table 4.3 shows the
amount of error resulting from linear vs. nonlinear quantization at different amplitude lev-
els. In general, nonlinear companding reduces the impact of error on low-amplitude sam-
ples, making it less than it would be with linear quantization.

With linear requantization, all 16-bit samples between 0 and 127 compress to 0 and de-
compress to 0. This is 100% error for the sample values between 1 and 127. In comparison,
with nonlinear companding, 16-bit samples between, say, 12 and 17 compress to 2 and de-
compress to 12, for an average error of 16%.

Percent error for the two methods is graphed in Figure 4.16 and Figure 4.17. Note that
the enlargement in Figure 4.16 covers samples only from 0 to 100, while the enlargement
in Figure 4.17 shows samples from 0 to 2000.

Percent error has an inverse relation to signal-to-quantization noise ratio. A large SQNR
is good; a large percent error is obviously not good. Nonlinear companding increases the
SQNR—the dynamic range—compared to what it ordinarily would be for 8-bit samples.
You recall that a digital audio file linearly quantized in n bits has a dynamic range of ap-
proximately 6n decibels. Thus, a bit depth of eight ordinarily would give a dynamic range
of 48 dB. -law encoding, however, reduces the average error per sample, effectively yield-
ing the equivalent of a 12-bit dynamic range, which is about 72 dB.

m

s(x) = 256x
r(x) = round(x>256)

TABLE 4.3 Comparison of Error with Linear Requantization Vs. Nonlinear
Companding (representative values only)

Linear Requantization Nonlinear Companding

Original
16-bit

Sample

8-bit Sample
After

Compression

16-bit Sample
After

Decompression
Percent

Error

8-bit Sample
After

Compression

16-bit Sample
After

Decompression
Percent

Error

1–5 0 0 avg. 100% 0 0 avg. 100%

6–11 0 0 avg. 100% 1 6 avg. 26%

12–17 0 0 avg. 100% 2 12 avg. 16%

18–24 0 0 avg. 100% 3 18 avg. 13%

25–31 0 0 avg. 100% 4 25 avg. 10%

127 0 0 100% 15 118 7%

128 1 256 100% 25 118 7.8%

383 1 256 33% 31 364 4.9%

30,038 117 29,952 0.29% 126 30,038 0%

31,373 122 31,232 0.45% 126 30,038 4.2%

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 213

214 Chapter 4 Digital Audio Representation

200 400 600 800 1000 1200 1400 1600 1800 2000

–100

–50

0

50

100

10 20 30 40 50 60 70 80 90 100

–100

–50

0

50

100

16-bit sample values (not all possible values shown)

Pe
rc

en
t e

rr
or

Enlargement of
samples 0–100

Figure 4.16 Percent error with nonlinear companding

200 400 600 800 1000 1200 1400 1600 1800 2000

–100

–50

0

50

100

16-bit sample values (not all possible values shown)

Pe
rc

en
t e

rr
or

Figure 4.17 Percent error with linear quantization

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 214

4.6 Frequency Analysis 215

4.6 FREQUENCY ANALYSIS

4.6.1 Time and Frequency Domains
In Chapter 1, we introduced the idea that both sound and image data can be represented as
waveforms—one-dimensional waveforms for sound and two-dimensional for images. We
explained that any complex waveform is actually the sum of simple sinusoidal waves. This
makes it possible to store sound and image data in two ways. Sound can be represented ei-
ther over the time domain or the frequency domain. Similarly, images can be represented
either over the spatial domain or the frequency domain. A transform is an operation that
converts between one domain and the other. The transform that is used most frequently in
digital audio processing is the Fourier transform. It’s time to look more closely at the math-
ematics of this transform.

If you represent digital audio over the time domain, you store the wave as a one-
dimensional array of amplitudes—the discrete samples taken over time. This is probably
the easiest way for you to think of audio data. If you think of it as a function, the input is
time and the output is a sample value. But consider the alternative. A complex waveform is
in fact equal to an infinite sum of simple sinusoidal waves, beginning with a fundamental
frequency and going through frequencies that are integer multiples of the fundamental fre-
quency. These integer multiples are called harmonic frequencies. To capture the complex
waveform, it is sufficient to know the amplitude and phase of each of the component fre-
quencies. The amplitude is, in a sense, how much each frequency component contributes to
the total complex wave. This is how the data is stored in the frequency domain—as the am-
plitudes of frequency components. Sometimes we refer to these values as coefficients, be-
cause they represent the multiplier for each frequency in the summation. If you think of this
as a function, the input is frequency and the output is the magnitude of the frequency com-
ponent. It’s useful to be able to separate the frequency components in order to analyze the
nature of a sound wave and remove unwanted frequencies. Be sure you understand that the
time domain and frequency domain are equivalent. They both fully capture the waveform.
They just store the information about the waveform differently.

Audio processing programs provide information about the frequency components of an
audio file. Two useful views of an audio file are the frequency analysis view and the spec-
tral view.

In the frequency analysis view (also called the spectrum analysis), frequency components
are on the horizontal axis, and the amplitudes of the frequency components are on the ver-
tical axis. The frequency analysis view is useful for seeing, in a glance, how much of each
frequency you have in a segment of your audio file. (The magnitude of the frequency com-
ponent will be defined formally below.) Notice that you can’t take a frequency analysis at
some instantaneous point in your audio file. Frequency implies a change in the amplitude
of the wave over time, so some time must pass for there to be a frequency. You can select a
portion of your audio file and ask for a frequency analysis on this portion. It’s also possible
to have the frequency analysis shown while an audio file is playing. In this case, the analy-
sis is done over a window of time surrounding the playhead, and you can watch the fre-
quency analysis graph bounce up and down as frequency components change over time.
The frequency analysis of the word “ boo” is shown in Figure 4.18. The file is in mono. For
a stereo file, there would be two frequency graphs, one superimposed over the other.

The spectral view (also called the spectrum) is another alternative for showing frequency
components. In a spectral view, time is on the horizontal axis and the frequency components

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 215

216 Chapter 4 Digital Audio Representation

Figure 4.19 Spectral view (from Audacity)

are on the vertical axis, with the amplitude of the frequency components represented by
color. Generally speaking, the brighter the color, the larger the amplitude for the frequency
component. For example, blue could indicate the lowest amplitude for a frequency compo-
nent. Increasingly high amplitudes could be represented by colors that move from blue to
red to orange to yellow or white.

The spectral view computes an “instantaneous spectrum” of frequencies for time t by
applying the Fourier transform to a window on the audio data that surrounds t. The window
is then moved forward in time, and the transform is applied again. Showing the frequency
components in one view as they change over time can give you an easily understood pro-
file of your audio data. Figure 4.19 is a spectral view where the lowest amplitude is repre-
sented by blue, the medium by red, and the highest by yellow or white.

Figure 4.18 Frequency analysis of the word “boo” (from Sound Forge)

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 216

4.6 Frequency Analysis 217

The term energy is sometimes applied to frequency and spectral analysis views. Infor-
mally defined in the context of a frequency analysis view, the energy is the area under the
frequency curve. In Figure 4.18, the energy is concentrated in the low frequencies, which
is the usual range of the human voice. In a spectral analysis view, the energy is concen-
trated in the brightest colors.

In the next section, we’ll examine the mathematical operations that make frequency
analysis possible.

4.6.2 The Fourier Series
If you continue to work in digital media, you’re certain to encounter the Fourier trans-
form. The goal of the discussion below is to make you comfortable with the mathemat-
ical concepts, relating them to the physical phenomenon of sound so that you can under-
stand what the transforms mean and how they are applied. At the end of the
mathematical discussion, we’ll summarize the main points as they relate to your work
in digital audio processing.

The observation that any complex sinusoidal waveform is in fact a sum of simple sinu-
soidals can be written in the form of a Fourier series. A Fourier series is a representation of
a periodic function as an infinite sum of sinusoidals:

Equation 4.2

In the context of digital audio, represents a complex sound
wave. Let f be the fundamental frequency we described at the be-
ginning of Section 4.6.1. (Note that f and are two different
things, the former being the fundamental frequency of the sound
wave and the latter being the function for the complex wave-
form.) is the fundamental angular frequency, where .
As n goes from to , takes you through the harmonic
frequencies related to f. For each of these, the coefficients and

tell how much each of these component frequencies con-
tributes to .

You should note that Equation 4.2 is true only for periodic functions. Also, is as-
sumed to be continuous. There are different equations for Fourier analysis that vary ac-
cording to whether the function is periodic or nonperiodic and discrete or continuous. We
haven’t yet shown you a form of the Fourier transform that is applicable to digital audio
processing.

You sometimes see Equation 4.2 written in a different form, with the first term of the
summation pulled out, as follows:

Equation 4.3

This separation of terms in Equation 4.3 is possible because and
In this form, is the DC component, which gives the average amplitude value over onea0

 cos(0) = 1. sin(0) = 0

f(t) = a0 + a
-1

n= -q
3an cos(n vt) + bn sin(n vt)4 + a

q

n=1
3an cos(n vt) + bn sin(n vt)4

f(t)
f(t)

bn

an

vnq- q
v = 2pfv

f(t)

f(t)

f (t) = a
q

n= -q
3an cos(n vt) + bn sin(n vt)4

ASIDE: To be more precise, a periodic func-
tion satisfying Dirichlet’s conditions can be
expressed as a Fourier series. Dirichlet’s condi-
tions are that the function be piecewise continu-
ous, piecewise monotonic, and absolutely
differentiable.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 217

period. Given that is the period of the fundamental frequency, the DC component is

given by

In an analogy with electrical currents (AC for alternating and DC for direct), you can pic-
ture the DC component graphically as a straight horizontal line at amplitude (i.e., it is
the zero-frequency component). The integral in the equation is taking all the values be-
tween and , summing them, and dividing by T. In other words, it is the average
amplitude of the complex waveform. Since the wave is assumed to be periodic, the average
amplitude over one period T is the same as the average over the entire wave. Each AC com-
ponent is a pure sinusoidal wave, beginning with the one that has fundamental frequency f.
The summation in Equation 4.3 creates harmonic components with frequencies that are in-
teger multiples of f. The coefficients of each of these frequency components are given by
the following equations:

Note that since , , and since ,
and . Rearranging Equation 4.3 and making these substitutions gives

yet another form:

Equation 4.4

On an intuitive level, it’s fairly easy to understand how Equation 4.2, which is expressed
in terms of sines and cosines, relates to a complex sound wave. However, this isn’t the most

= a0 + 2a
q

n=1
[an cos(n vt) + bn sin(n vt)]

= a0 + a
q

n=1
[2an cos(n vt) + 2bn sin(n vt)]

= a0 + a
q

n=1
[an cos(n vt) + bn sin(n vt) + an cos(n vt) + bn sin(n vt)]

= a0 + a
q

n=1
[an cos(-n vt) - bn sin(-n vt) + an cos(n vt) + bn sin(n vt)]

f(t) = a0 + a
q

n=1
[a-n cos(-n vt) + b-n sin(-n vt) + an cos(n vt) + bn sin(n vt)]

b0 = 0b-n = -bn

 sin(-x) = - sin(x)a-n = ancos(-x) = cos(x)

for - q … n … q

bn =
1

TL
T>2

-T>2 f(t) sin (n vt) dt

an =
1

TL
T>2

-T>2 f(t) cos (n vt) dt

T>2-T>2
a0

a0 =
1

TL
T>2

-T>2 f (t) dt

T =
1

f

218 Chapter 4 Digital Audio Representation

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 218

4.6 Frequency Analysis 219

common form for the Fourier series. There’s another, equivalent way of expressing the
Fourier series. It is as follows:

Equation 4.5

where e is the base of the natural logarithm (~2.71828); i is ; is defined as before;
and is a complex number. Recall that a complex number c is defined as

where a is the real component and b is the imaginary component.
Where does Equation 4.5 come from, and how can it be shown

that it is equal to Equation 4.2? The equivalence is derivable from
Euler’s formula, which states that

Based on this identity

Equation 4.2 and Equation 4.5 really say the same thing. Let’s see how they relate to
each other. Recall that is a complex number. The real and imaginary components of the
complex number correspond to the coefficients of the cosine and sine terms, respectively,
in Equation 4.2, as shown below.

Equation 4.6

We can do substitutions using Euler’s identity and the identity given in Equation 4.6, and
show that Equation 4.5 is equivalent to Equation 4.2 and Equation 4.4.

Step 1

Step 2

Step 3

Step 4

Step 5+ a
q

n=1
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)]

= a
-1

n= - q
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)] + a0 - ib0

= a
q

n= - q
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)]

= a
q

n= - q
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) - i2bn sin(n vt)]

= a
n= - q

[(an - ibn)(cos(n vt) + i sin(n vt))]

= a
q

n= - q
[Fn(cos(n vt) + i sin(n vt))]

f(t) = a
q

n= - q
Fnein vt

Fn = an - ibn

Fn

ein vt = cos(n vt) + i sin(n vt)

einx = cos(nx) + i sin(nx)

c = a + bi

Fn

v2-1

f (t) = a
q

n= - q
Fnein vt

ASIDE: One of the greatest mathematicians
of all time, Swiss mathematician Leonhard
Euler (1707–1783) made contributions to num-
ber theory, differential equations, complex num-
bers, Fermat’s theorems, prime numbers, har-
monics, optics, and mechanics, to name just
some of the areas in which he excelled.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 219

q

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

The derivation is justified as follows:

Step 1: Substitution based on Euler’s identity.

Step 2: Substitution of Equation 4.6.

Step 3: Distribution of terms.

Step 4: .

Step 5: Separation of summation into three parts.

Step 6: .

Step 7: Change first summation to rather than and reverse the sign of n on all

terms in the summation.

Step 8: Since both summations are now over the same range, combine them.

, .

Step 10: Combine terms, and we now have Equation 4.4.

The point is that Equation 4.2 and Equation 4.4 and Equation 4.5 give the same infor-
mation. They all tell you that a continuous complex waveform is equal to an infinite sum of
simple cosine and sine functions. and tell “how much” of each frequency component
contributes to the total waveform. and are explicit in Equation 4.2. They are implicit
in Equation 4.5, derivable from Equation 4.6.

4.6.3 The Discrete Fourier Transform
Recall that is assumed to be a continuous function that can be graphed as a continuous
waveform. Now we need to move to the domain of digital audio, where an audio file is an array
of discrete samples. The discrete equivalent of Equation 4.2 is the defined as follows:

f(t)

bnan

bnan

 sin(-n) = -sin(n)Step 9: an = a-n -bn = b-n , cos(-n) = cos(n), and

a
-1

n= - qa
q

n=1

b0 = 0

- i2 = -(2-1)2 = 1

= a0 + 2a
q

n=1
[an cos(n vt) + bn sin(n vt)]

= a0 + a
q

n=1
2[an cos(n vt) + bn sin(n vt)]

= a0 + a
q

n=1
can cos(n vt) - ian sin(n vt) + ibn cos(n vt) + bn sin(n vt) +
an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)

d

= a0 + a
q

n=1

ca-n cos(-n vt) + ia-n sin(-n vt) - ib-n cos(-n vt) + b-n sin(-n vt)
+ an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)

d
+ a

q

n=1
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)]

= a
q

n=1
[a-n cos(-n vt) + ia-n sin(-n vt) - ib-n cos(-n vt) + b-n sin(-n vt)] + a0

+ a
q

n=1
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)]

= a
-1

n= - q
[an cos(n vt) + ian sin(n vt) - ibn cos(n vt) + bn sin(n vt)] + a0

220 Chapter 4 Digital Audio Representation

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 220

4.6 Frequency Analysis 221

KEY EQUATION

Let be a discrete, complex number function representing a digital audio
signal in the frequency domain. Let be a discrete integer function representing a dig-
itized audio signal in the time domain. and . Then the discrete
Fourier transform is defined by

Equation 4.8

for 0 … n … N - 1

Fn =
1

N a
N-1

k=0
fk cosa2pnk

N
b - i fk sina2pnk

N
b =

1

N a
N-1

k=0
fke

-i2pnk
N

v = 2pfi = 2-1
fk

Fn

KEY EQUATION

Let be a discrete integer function representing a digitized audio signal in the
time domain. Let be a discrete, complex number function representing a digital audio
signal in the frequency domain. and . Then the inverse discrete
Fourier transform is defined by

Equation 4.7

= a
N-1

n=0
Fne

i2pnk
N

 fk = a
N-1

n=0
can cosa2pnk

N
b + bn sina2pnk

N
b d

v = 2pfi = 2-1
Fn

fk

ASIDE: The fundamental frequency is de-
fined here in terms of cycles per number of
samples. You might expect that it would be de-
fined as cycles per unit time. You can assume
that time units are implicit in the number of
samples.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 221

(Notice that that we’ve changed to subscript notation, , to empha-

, then the fundamental frequency f
1

is . As it applies to sound, Equation 4.7 states that a digital audio
N

waveform consisting of N samples is equal to a sum of N cosine and
sine frequency components. If you know the amplitude for each

bn for 0 … n … N - 1component (an and), you can reconstruct the

wave. The DC component, , is defined by , giving an average amplitude.

The AC components and bn, for , are and

.bn =
1

N a
N-1

k=0
fk s ina 2pnk

N
b

an =
1

N a
N-1

k=0
fk cosa2pnk

N
b 1 … n … Nan

a0 =
1

N a
N-1

k=0
fka0

size that this is an array of discrete sample values rather than a con-
tinuous function.) Since v = 2pf

fk

If we view the inverse discrete Fourier transform as an effective procedure, then it be-
gins with a digital audio file in the frequency domain and transforms it to the time domain.
But what if you have an array of audio samples over the time domain and want to derive the
frequency components? For this you need the discrete Fourier transform.

The discrete Fourier transform (DFT) operates on an array of N audio samples, return-
ing cosine and sine coefficients that represent the audio data in the frequency domain.

Each is a complex number with real and imaginary parts that correspond to the cosine
and sine frequency components. That is, is the kth sample in the array
of discrete audio samples.

The two forms of Equation 4.8 are equivalent. The first may be a more intuitive way of
thinking about complex waveforms—as a sum of simple sinusoidals—but the second is
more concise and turns out to be more convenient for computing the Fourier transform, and
thus it’s the form you see most often in the literature.

Another thing that might confuse you is the seemingly-interchangeable use of either pos-
itive or negative exponents along with the imaginary number i. For example, Equation 4.8
might have i2pnk rather than -i2pnk as the power of e. The choice of a positive or negative
exponent is arbitrary, with one caveat: If the exponent is negative in the forward transform,
the sign must be positive in the inverse, and vice versa. And there’s one last thing to add to
the confusion. Engineers use j instead of i to represent .

The purpose of applying the discrete Fourier transform to digital audio data is to sepa-
rate the frequency components, analyze the nature of an audio clip, and edit it by possibly
filtering out or altering some frequencies. The Fourier transform is widely used in both
audio and (in the 2-D case) image processing, and it is implemented in a wide variety of
mathematical programs and multimedia editing tools.

4.6.4 A Comparison of the DFT and DCT
At this point, you may be wondering what the difference is between the discrete Fourier
transform and the discrete cosine transform described in Chapter 2. We’ll first look at the
mathematical differences and then consider how these relate to applications.

Mathematically, the one-dimensional DCT is in fact the DFT applied to N audio sam-
ples to which (implicitly) another N samples—a symmetric copy—are appended. By
“symmetric copy” we mean that in addition to sample values , the DCT
algorithm operates as if there were another N sample values, .
Now think about the sine term in the discrete cosine transform given in Equation 4.8. The
sine function is an odd function, which means that . The cosine func-
tion is an even function, which means that . Since the DCT algorithm
assumes that the data includes the negative of all the given sample values, it is in effect
canceling the sine term, since for every term there is also the negative of the term. This
leaves only the cosine terms—which give us the one-dimensional discrete cosine trans-
form. (The two-dimensional DCT that we showed in Chapter 2 is an extension of this for
image processing.)

When you implement the DCT, you don’t really append the extra samples to the data.
The algorithm just “pretends” that they are there. This is how the algorithm assumes that
the data it is given represents a periodic discrete function—one that repeats in a pattern.
Mathematically, the statements we make in Equation 4.3 and Equation 4.7—which de-
scribe the nature of our function defining the audio data, and the fact that it is decompos-
able into frequency components—are true only if the function is periodic. We have to as-
sume in what sense the audio function is periodic. In fact, it is probably something quite
complex with no single repeated pattern. For the Fourier transform, we assume it is peri-
odic by assuming that the entire set of data points keeps repeating—the whole audio file
constitutes one period; that is, sample values keep repeating. For the co-
sine transform, we assume that the data points have appended to them a “mirror image” of
themselves, and then this total pattern repeats.

[f0, f1, Á , fN-1]

cos (-x) = cos (x)
sin(-x) = -sin(x)

[-fN-1, -fN-2, Á , -f0]
[f0, f1, Á , fN-1]

2-1

Fn = an - ibn. fk

Fn

222 Chapter 4 Digital Audio Representation

Supplements on
Fourier transform:

interactive tutorial

programming
exercise

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 222

FourierIntroduction.htm
FourierProgrammingWorksheet.pdf

4.6 Frequency Analysis 223

What are the practical consequences of these simplifying assumptions? In the case of
the DFT, one important consequence is that for an audio file of N samples, the DFT yields
no more than N�2 valid frequency components. The emphasis is on the word valid. You
saw in Chapter 2 that the DCT yields N frequency components for N samples. The reason
the DFT yields only N�2 frequency components is based on the Nyquist theorem. Let’s do
the math. Our variables are defined as follows:

By the Nyquist theorem, if we sample at a frequency of s, then we can validly sample only
frequencies up to s�2. This implies that when we perform the DFT, there’s no point in de-
tecting frequency components above s�2, since they couldn’t have been sampled by this
sampling rate to begin with. The DFT actually yields N output values, but we don’t want to
use all N of them; some of the higher ones must be discarded.

Let’s look more closely at how the DFT chooses the component frequencies to measure.
It does so by dividing the total time of the audio data being transformed, T, into N equal
parts. The frequency components correspond to k�T for . 1�T is the fun-
damental frequency (using units of time rather than samples). This makes sense, because T
is assumed to be the period of the wave. 2�T is the second harmonic frequency, and so
forth. For what value of k, with , do we find ? This would cor-
respond to the highest valid frequency component. We can easily solve this as follows:

When we reach N�2, we have reached the limits of the usable frequency components from
the output.

Here’s an example: Say that you have an audio clip that is a pure tone at 440 Hz. The
sampling rate is 1000 Hz. You are going to perform a Fourier transform on 1024 samples.
Thus . The frequency components that are measured by the
transform are separated by . There are valid frequency
components, the last one being . This is as it should be, since
the sampling rate is , so we are not violating the Nyquist limit.

The DCT works differently. Because it takes N sample points and assumes it has N more,
it implicitly has 2N samples per period, so N frequency components are given as output.

You may think now that the DCT is inherently superior to the DFT because it doesn’t
trouble you with complex numbers, and it yields twice the number of frequency compo-
nents. But it isn’t as simple as that. Because of their mathematical properties, the DCT
works better for some applications, the DFT for others.

Discarding the DCT’s sine component may make you a little suspicious anyway. If it oc-
curs to you that the DFT must contain more information, you’re right. Thinking about the
relationship between the trigonometric form of the DFT (the one containing sines and
cosines) with the exponential form (the one containing e to a power) will help you to under-
stand the additional information contained in the DFT but not in the DCT.

in the exponential form of the Fourier transform is a complex number, having a real
and an imaginary part. The cosine term in the trigonometric form relates to the real-number

Fn

2 * 500 Hz = 1000 Hz
0.9765625 * 512 = 500 Hz

N>2 = 5121>T = 0.9765625 Hz
T = 1024>1000 = 1.024 sec

 k =
Ts

2
=

T(N>T)

2
=

N

2

k

T
=

s

2

k>T = s>20 … k … N - 1

0 … k … N - 1

 s = N>T = sampling rate
 T = total sampling time
 N = number of samples

Supplements on
DCT and DFT:

interactive tutorial

worksheet

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 223

FourierComparison.htm
FourierVsDCTWorksheet.pdf

224 Chapter 4 Digital Audio Representation

part of , and the sine term relates to the imaginary part. Specifically, . (The
DCT, in comparison, has only a real-number part.) Earlier in this chapter, we said that in the
spectral view of a waveform, color represents the amplitudes of the frequency components.
We can now be more precise about this. and can be recombined to yield the magnitude
and phase of the nth frequency component.

bnan

Fn = an - ibnFn

KEY EQUATION

Let the equation for the inverse discrete Fourier transform be as given in
Equation 4.7. Then the magnitude of the nth frequency component, , is given by

An = 2an
2 + bn

2 for 0 … n … N - 1

An

KEY EQUATION

Let the equation for the inverse discrete Fourier transform be as given in
Equation 4.7. Then the phase of the nth frequency component, , is given by

fn = - tan-1abn

an
b 0 … n … N - 1

fn

This gives us yet one more way to describe a complex waveform—the magnitude/phase
form of the inverse DFT, as a sum of cosine waves offset by their phase.

KEY EQUATION

Let the equation for the inverse discrete Fourier transform be as given in
Equation 4.7. Then the magnitude/phase form of the inverse DFT is given by

fk = a
N-1

n=0
An cos(2pnk + fn)

(Some sources use a sine function rather than a cosine in this magnitude/phase form, but
that’s fine since a sine function is just a phase-offset cosine.)

Now you can see that with the sine term that is part of the DFT,
we have information about the phase of the signal. Is phase impor-
tant? In the realm of sound, can we hear phase differences? Some
sources will tell you that the human ear doesn’t really detect phase
differences, so it’s information that in many situations can be dis-
carded. Ohm’s phase law, formulated in the 1800s, states that the
phase of a waveform has no effect on how humans perceive the
sound waveform. Let’s be precise about what this means. That is,

ASIDE: German physicist George Simon
Ohm (1789–1854) is best known for his re-
search in electrical current and his precise for-
mulation of the relationship between potential
and current in electrical conduction. The unit of
electrical resistance was named in his honor.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 224

4.6 Frequency Analysis 225

a pure-tone sound wave could be sent to you at one moment. Then later, the same tone
could be sent, but with the phase shifted. You would hear no difference in these two sounds.
However, if both of these tones were sent to you at the same time—with the phase of one
shifted—you would be able to hear the destructive interference that results from summing
the two out-of-phase tones. In environments where sounds are reverberating a great deal
anyway, phase differences can be masked. But in more controlled environments, phase dis-
tortion is audible to discriminating ears. Stereo speakers that are out-of-phase can be quite
annoying to audiophiles, for example.

And what about phase in images? Perhaps surprisingly, it is easier experimentally to
show the importance of phase in images than in sound. Experiments show that if you take
two images—call them A and B—that are decomposed into their magnitude and phase com-
ponents, and you replace B’s phase component with A’s while leaving the magnitude com-
ponent unchanged, image B will then look more like A than what it originally looked like.
That is, the phase component dominates in our perception. This is one of the things that
makes the two-dimensional Fourier transform very useful in image editing and restoration.

The Fourier transform also can be applied to fast implementations of convolutions. In
Chapter 3, we described a convolution as a kind of two-dimensional spatial filter, altering
pixels that are represented in the spatial domain. Convolutions can also be done in one di-
mension on audio data that are represented in the time domain. An alternative to perform-
ing the convolution in the time/space domain is to transform the data to the frequency do-
main by means of the Fourier transform. Then the operations can be done more efficiently
by simple multiplications. In short, the Fourier transform can be the basis for a very effi-
cient implementation of convolution.

For digital audio, the Fourier transform is primarily used to analyze an audio signal.
Figure 4.2 showed how it is used to create a frequency spectrum of an audio file based on
the magnitudes of the frequency components. From the frequency spectrum, you can iden-
tify which frequencies are present and which are not, and you can detect areas in the file
that may need to be corrected.

On the other hand, the main application of the DCT is image compression. The DCT is
one of the main steps in JPEG compression. It is a good choice in this context because the
DCT concentrates energy into the coefficients corresponding to the low-frequency compo-
nents. This is where we want to store the most detailed information as compression is per-
formed. As you saw in Chapter 3, it’s possible to discard more of the high-frequency infor-
mation because the human eye can’t detect it very well anyway.

The bottom line is that both the DCT and the DFT are useful. Fourier analysis in gen-
eral, under which both the DCT and the DFT are subsumed, has wide applications that ex-
tend beyond digital imaging and digital audio into cryptography, optics, number theory,
statistics, oceanography, signal processing, and other areas.

4.6.5 The Fast Fourier Transform
The usefulness of the discrete Fourier transform was extended greatly when a fast version
was invented by Cooley and Tukey in 1965. This implementation, called the fast Fourier
transform (FFT), reduces the computational complexity from to . For
those of you who haven’t yet studied computational complexity, this means that you can
transform much larger audio or image sample files through the FFT than through the DFT
and still finish the computation in a reasonable amount of time. The time it takes to do the
computation of the DFT grows at the same rate that grows, while the time for the FFTN2

O(N log2(N))O(N2)

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 225

226 Chapter 4 Digital Audio Representation

grows at the same rate that grows, where N is the number of samples. This is a
big savings in computational time in light of the fact that CD quality stereo, for example,
has 44,100 samples in every second, giving you a very large N in just a few minutes. Let’s
look at the time savings more closely.

The ratio of the time it takes to compute the DFT versus the time it takes to compute the

FFT is given by . You can see how fast this ratio grows by trying

increasingly large values of N.

For , you get .

For you get .

For , you get .

It takes the DFT more than 100 times longer to compute a Fourier transform on a block
of 1024 samples than it takes the FFT. The larger the N, the more important it is that you
use the FFT. Otherwise, it simply takes too long to do the computation. The FFT is more
efficient than the DFT because redundant or unnecessary computations are eliminated.
For example, there’s no need to perform a multiplication with a term that contains
or . We know that , so a term containing can be discarded, and

, so a term containing can just be added or subtracted without a multi-
plication. Many repetitive computations can also be identified so that they are done only
one time.

The FFT has some details in its implementation that you need to know about because
they are considerations when you apply the Fourier transform in digital audio processing
programs. The first thing to point out is that you can’t perform any kind of Fourier
transform—either the DFT or the FFT—on a single sample. You need a block of samples.
Imagine looking at the waveform of an audio file you’re working on in a digital audio pro-
cessing program, picking one point in the waveform, and wondering what the frequency
components are at precisely that point. The problem is that frequency arises from the
changing values in the waveform, but you don’t have any changing values if you’re only
looking at one point.

Another way of thinking about this is in terms of the frequencies (i.e., pitches) that you
can hear. Say that you were asked to listen to a pure tone that lasted less than a sixteenth of
a second. Do you think you’d be able to identify what pitch it was? Probably not. At best it
would sound like a click.

The point is that for the FFT or DFT to divide sound into frequency components, it
needs a block of samples—not a just one sample—to work with. So why not just take the
whole audio file—the entire waveform—and perform the transform on the whole thing?
You can’t do this with the FFT. Because of the way it weeds out redundant and unneces-
sary calculations, the FFT algorithm has to operate on blocks of samples where the num-
ber of samples is a power of 2. The DFT can work with a sample set of any block size.
Because it is so fast, the FFT is the form of the Fourier transform used in digital audio
programs. When you use it, you can specify the window size, which is the number of

cos(0)cos(0) = 1
sin(0)sin(0) = 0cos(0)

sin(0)

65,536

log2(65,536)
=

65,536

16
= 4096N = 65,536

1024

log2(1024)
=

1024

10
L 102N = 1024,

256

log2(256)
=

256

8
= 32N = 256

N2

N log2(N)
=

N

log2(N)

N log2(N)

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 226

4.6 Frequency Analysis 227

samples per block processed by the FFT. The number might vary from, say, 64 to 65,536.
When you choose a point in the audio file and ask for a frequency analysis, the FFT de-
termines the frequency components in an area of the specified window size, around the
point you selected. The frequency analysis view you’ll get will look something like
Figure 4.18.

Some audio processing tools require that you choose an FFT window size for their re-
quired frequency analysis. For example, noise reduction generally begins with a frequency
analysis of a portion of audio that ought to be silent but that contains background noise.
The size of the FFT window is significant here because adjusting its size is a tradeoff be-
tween frequency and time resolution. You have seen that for an FFT window of size N,
frequency components are produced. Thus, the larger the FFT size, the greater the fre-
quency resolution. However, the larger the FFT size, the smaller the time resolution. Think
about why this is so. A larger FFT window covers a longer span of time. A noise profiler
divides the selected portion of audio—the portion that ought to be silent—and repeatedly
does an FFT analysis of blocks of size N within this window. The average of the frequency
components yielded from each block becomes the frequency profile for the selected por-
tion of audio. A larger FFT size looks at larger blocks of time, losing some of the audio
detail that occurs over time (i.e., sudden changes in amplitude. If the FFT size is too large,
the result is time slurring, a situation where the FFT of the audio selection doesn’t capture
sufficient detail over time).

The frequency analysis in Figure 4.20 was done on a simple waveform representing
a pure tone at 440 Hz. Since there is only one frequency in the wave, it doesn’t matter
what point you select for the transform. You’ll always get the same frequency analysis
because the frequency doesn’t change over time. But you would expect that there would
be just one frequency component, a single spike in the graph at 440 Hz. Why is this not
the case?

The problem has to do with the assumption that the FFT makes about the periodicity
of the signal. When the FFT operates on a window of N samples, it assumes that this con-
stitutes one period of a periodic signal. Even the simplest case—a pure sinusoidal
wave—reveals the problem with this assumption. Assume that the FFT is operating on
1024 samples of a 440 Hz wave sampled at 8000 samples per second. The window size
of 1024 samples would cover about 56.32 cycles of the wave—a non-integer multiple.
This means that the end of the window would break the wave in the middle of a cycle.
For the operation of the FFT, the file is assumed to consist of repeated periods of this

N/2

Figure 4.20 440 Hz wave on left and its frequency analysis on the right (from Audition)

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 227

228 Chapter 4 Digital Audio Representation

shape. Figure 4.21 shows what it looks like when you put two of these periods end-to-
end. They are out-of-phase, ending about a third of the way through a cycle at the end of
the first period, and jumping to the beginning of the cycle at the beginning of the second
period. Thus, the wave the FFT assumes it is analyzing doesn’t correctly represent the
true frequency of the audio clip. The FFT interprets the discontinuity as additional fre-
quency components. This phenomenon is called spectral leakage. As the FFT moves
across the entire waveform, each time performing its operations on a window of size
1024, it repeatedly detects the spurious frequencies, which is why you see them in the
frequency analysis view of Figure 4.20.

If you could juggle your numbers so that your window covered an integral number of cy-
cles, or if you were lucky enough that the numbers came out evenly on their own, you would-
n’t get spectral leakage. For example, if your sampling rate is 1024 Hz, the frequency of the
wave is 512 Hz, and you sample for one second, you’ll have a block of 1024 samples that
cover exactly two cycles, so there would be no spectral leakage. Of course, things don’t work
this way in the real world. Your sound file has a length and frequencies dictated by the nature
of the sound. So the problem of spectral leakage has to be dealt with in some other way.

Spectral leakage is handled in audio processing programs by the application of a window-
ing function. The purpose of a windowing function is to reduce the effect of the phase discon-
tinuities that result from the assumption that the block on which the FFT is applied is one pe-
riod in a periodic wave. When you apply the FFT for frequency analysis in an audio processing
program, you’re asked to specify which windowing function to apply. Common choices are
triangular, Hanning, Hamming, and Blackman windowing functions. In Figure 4.20, you can
see that the Blackman function is being used, with an FFT window size of 1024.

The purpose of a windowing function is to reduce the amplitude of the sound wave at
the beginning and end of the FFT window. The phase discontinuities occur at the ends of
the window, and these phase discontinuities introduce spurious frequencies into the fre-
quency analysis. If the amplitude of the wave is smaller at the beginning and end of the
window, then the spurious frequencies will be smaller in magnitude as well.

Shaping a wave in this way is done by multiplying the wave by another periodic func-
tion. When you multiply one sinusoidal wave by another, it’s as if you putting the first one
in an envelope that is the shape of the second. Thus, each different windowing function is
a different sinusoidal multiplier that shapes the original wave in a slightly different way.
Four windowing functions are given in Table 4.4 and are graphed in Figure 4.22. Other
functions exist, including Blackman-Harris, Welch, and Flat-Top.

Figure 4.21 Discontinuity
caused by an FFT window that
does not cover an integral num-
ber of cycles

Supplements on
windowing
functions:

interactive tutorial

worksheet

mathematical
modeling
worksheet

Σ

eiθ

θ

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 228

FourierWindowing.htm
SpectralLeakageAndFourierWindowing.pdf
WindowingFunctionsFourier.pdf

4.6 Frequency Analysis 229

TABLE 4.4 Windowing Function for FFT

Triangular windowing function

Hanning windowing function

u(t) =
1

2
c1 - cosa2pt

T
b d for 0 … t … T

u(t) = µ
2t

T
for 0 … t 6

T

2

2 -
2t

T
for

T

2
… t … T

∂

Hamming windowing function

Blackman windowing function

for 0 … t … T

u(t) = 0.42 - 0.5 cosa2pt

T
b + 0.08 cosa4pt

T
bu(t) = 0.54 - 0.46 cos a2pt

T
b for 0 … t … T

Figure 4.23 shows how application of the Hanning windowing function changes the
shape of a single-frequency sound wave. The frequency of the wave is 440 Hz. The sampling
frequency is 1000 Hz. We want 1024 samples. Thus, the period is

. Notice that applying the windowing function does not alter the frequency of
the sound wave—only the amplitude at the ends.
1.024 seconds

T = 1024>1000 =

0 1.024
Hamming
Blackmann

Triangle
Hanning

Figure 4.22 Graphs of windowing functions for FFT

Figure 4.23 Hanning window function applied to a simple sinusoidal wave

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 229

230 Chapter 4 Digital Audio Representation

From the previous discussion, you should now understand that when you do frequency
analysis in an audio processing program, there are two settings that affect your results: the
window size and the windowing function applied. The size of the window involves a trade-
off between frequency and time resolution. Remember that you’re not measuring an instan-
taneous frequency; instead, you’re measuring the frequency over a period of time T. Unless
you have a perfectly constant sound wave, the frequency changes over that period of time.
Applying the FFT to the window gives you the average frequency components over period
T. A bigger window averages over a bigger span of time, and thus provides a less detailed
picture of the changes that occur over period T than would be captured in a smaller window.
In short, increasing the window size increases frequency resolution in that it measures
more frequency components, but it decreases time resolution in that the frequency compo-
nents are derived from averages that span a longer period of time.

Loss of time resolution can be partially compensated for by the way in which FFT is im-
plemented. Rather than apply the first FFT to samples 0 through N � 1 and then slide over
to sample N to 2N � 1 for the next application of the transform, it’s possible to slide the
window over by smaller amounts; that is, overlapping windows can be analyzed.

So how do you know what window size to use? Consider first using the default value in
your audio processing program. From there, you can experiment with different window
sizes to see what information each one gives you. Larger window sizes take more process-
ing time, so this is another factor in your choice. It’s possible to play a sound file and watch
the frequency analysis view, which changes dynamically to show you how the frequency
components change over time. To be able to do this in real time, however, you have to set
your window size relatively low—say, 1024 samples or less.

Windowing functions differ in the types of signals for which they are best suited; the ac-
curacy of their amplitude measurements, even for low-level components; their frequency
resolution—that is, their ability to differentiate between neighboring frequency compo-
nents; and their ability to reduce spectral leakage. Hanning and Blackman give good results
for most applications. If detailed frequency analysis is important to your work, you should
investigate the literature on each windowing function and experiment with them to see
what results they yield.

4.6.6 Key Points Regarding the Fourier Transform
So that you don’t lose the forest in the trees, we end this section with a summary of the key
points related to the Fourier transform.

• The Fourier transform is applicable in both audio and image processing. It is performed
in one dimension for audio processing and two dimensions for image processing.

• The discrete Fourier transform (DFT) has two equivalent forms,

and

Either form yields a complex number , where and are the
coefficients for the cosine and sine frequency components of the waveform being
analyzed.

bnanFn = an - i bn

Fn =
1

N
 a
N-1

k=0
fke

-i2pnk
N where 0 … n … N - 1

Fn =
1

N
 a
N-1

k=0
fk cosa2pnk

N
b - i fk sina2pnk

N
b

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 230

4.7 Statistical Analysis of an Audio File 231

• The Fourier transform can be thought of in pairs: the forward and inverse transforms.
The forward transform goes from the time to the frequency domain. The inverse trans-
form goes from the frequency domain to the time domain. The transform is invertible
without loss of information (down to rounding errors). The two forms of the inverse dis-
crete Fourier transform corresponding to the forward transform shown above are

and

• One difference between the discrete Fourier and the discrete cosine transform is that
the DFT contains phase information while the DCT does not. You can express an
audio wave in terms of the magnitude of its frequency components offset by
a phase . This is captured in the magnitude/phase form of the inverse discrete
Fourier transform:

• The fast Fourier transform (FFT) is a fast implementation of the discrete Fourier
transform. Both versions operate on a window of N samples. The FFT requires that N
be a power of 2, while the DCT does not. (However, there do exist variants of the FFT
that don’t have this requirement.) The FFT is the version of the Fourier transform that
is generally used in audio processing programs, because it is fast.

• For both the DFT and the FFT, N�2 frequency components are given as output, with
frequencies k�T for . This is another difference between the DCT and
the DFT or FFT. The DCT yields N frequency components for N samples, while the
DFT and FFT yield N�2 frequency components for N samples.

• Increasing the window size for the FFT increases the frequency resolution but
decreases the time resolution.

• Both the DCT and the FFT yield frequency components that aren’t actually part of the
audio signal. This is because they have to make assumptions about the periodicity of
the sample blocks they analyze. The DCT assumes that the block and its mirror image
constitute one period of the entire sound wave. The FFT assume that the block alone
constitutes one period. Windowing functions are used to help eliminate the spurious
frequencies that are output from the transforms.

• Examples of windowing functions are Hanning, Hamming, Blackman, and
Blackman–Harris.

4.7 STATISTICAL ANALYSIS OF AN AUDIO FILE
In addition to frequency and spectral views, which analyze sound data in the frequency
domain, audio processing programs sometimes offer a statistical analysis of your audio files,
which analyze sample values in the time domain. The statistical analysis may include the
minimum and maximum possible sample values; the peak amplitude in the file; the number
of clipped samples; the DC offset; the total, minimum, maximum, and average root-mean-
square (RMS) amplitude; and a histogram.

1 … k … N>2

fk = a
N-1

n=0
An cos(2pnk + fn)

fn

An

fk = a
N-1

n=0
Fne

i2pnk
N

fk = a
N-1

n=0
can cosa2pnk

N
b + bn sina2pnk

N
b d

Supplement on
RMS:

mathematical
modeling
worksheet

Σ

eiθ

θ

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 231

RMSWorksheet.pdf

232 Chapter 4 Digital Audio Representation

Let’s consider what is meant by the DC offset. You have seen that no matter how com-
plex a sound wave is, you can decompose it into frequency components. Each frequency
component is a pure sinusoidal wave that is centered on the horizontal axis. However, ana-
log to digital conversion is not a perfect process, and it can happen that the frequency com-
ponents of the sampled waveform are not perfectly centered at 0. The amount of deviation
is called the DC offset. You generally won’t hear if your audio file has a DC offset, but it
may affect certain audio processing steps, particularly those based on finding places where
the waveform crosses 0, called zero-crossings. Your audio processing program probably
will have a feature for adjusting the DC offset.

The root-mean-square amplitude (also referred to as RMS power or RMS level, depend-
ing on your audio processing program) is a measure of the average amplitude in the sound
wave over a given period—either over the entire sound wave or over a portion of it that
you’ve selected. It is computed as follows:

Minimum or maximum RMS power makes sense only if you have
defined a window size, which you should be able to do in the statis-
tics view. If the window size is 50 milliseconds, for example, then
the minimum RMS power is the minimum RMS amplitude for any
50-millisecond period in the selected waveform. The average RMS
amplitude (sometimes referred to as average RMS power) is the
average RMS amplitude for all windows of the specified size.

An audio histogram shows how many samples there are at each
amplitude level in the audio selection. An example of an audio his-
togram is given in Figure 4.24.

ASIDE: You may also see the RMS equation

in the form where max is the maxi-

mum sample value. This derives from

, which is the

continuous version of Equation 4.9. When
applied to a sine for k full cycles, you get

.A
1

2kp1
2kp

0
(max * sin(x))2 =

max

22

A
1

T2 - T1
1T2

T1
(f(x))2dx

r =
max

22

KEY EQUATION

Let N be the number of samples in an audio signal. is the amplitude of the
ith sample. Then the root-mean-square amplitude, r, is defined as

Equation 4.9

r = B
1

Na
N

i=1
xi

2

xi

Figure 4.24 Audio histogram (from Audition)

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 232

4.8 MIDI 233

4.8 MIDI

4.8.1 MIDI Vs. Sampled Digital Audio
Thus far, we’ve been considering digital audio that is created from sampling analog sound
waves and quantizing the sample values. There’s another way to store sound in digital
form, however. It’s called MIDI, which stands for Musical Instrument Digital Interface. It
may be more precise to say that MIDI stores “sound events” or “human performances of
sound” rather than sound itself. Written in a scripting language, a MIDI file contains mes-
sages that indicate the notes, instruments, and duration of notes to be played. In MIDI ter-
minology, each message describes an event (i.e., the change of note, key, tempo, etc.) as a
musical piece is played.

With sampled digital audio, an audio file contains a vector of samples—perhaps millions
of them—that capture the waveform of the sound. These are reconstructed into an analog
waveform when the audio is played. In comparison, MIDI messages tell what note and in-
strument to play, and they are translated into sound by a synthesizer. If a message says the
equivalent of “Play the note middle C for 1⁄2 second, and make it sound like a piano,” then the
computer or MIDI output device either retrieves “piano middle C” from a memory bank of
stored sounds, or it creates the sound from mathematical calculations, a process called FM
synthesis. We’ll look at these synthesis methods more closely in a moment.

The difference between sampled digital audio and MIDI is analogous to the difference
between bitmapped graphics and vector graphics. Bitmaps store color values at discrete
points in space, while vector graphics store symbolic descriptions of shapes—for example,
an encoding of “draw a red square.” Analogously, sampled digital audio files store sound
wave amplitudes at discrete points in time, while MIDI files store symbolic descriptions of
musical notes and how they are to be played. Just as vector graphic files are generally much
smaller than bitmaps, MIDI files are generally much smaller than sampled digital audio. It’s
much more concise to encode the instruction “Play a piano note middle C for 1⁄2 second” than
to store half a second of sound recording the piano’s middle C. At 44.1 kHz in stereo, with
two bytes per sample per channel, just a second requires 176,400 bytes when the audio is
stored as samples. The MIDI message, in comparison, would require just a few bytes.

Because MIDI stores information in terms of notes and instru-
ments played, it’s easier to deal with this information in discrete
units and edit it. For example, it’s possible to change individual
notes, or even to change a whole piece so that it’s played with a dif-
ferent instrument. This would be very difficult with sampled digital
audio. Think about it. With sampled audio, how would you deter-
mine exactly where one musical note ends and another begins? How
would you identify what instrument is being played, just on the basis
of an audio waveform? How would you change a waveform repre-
senting a tuba to a waveform representing a piccolo playing the
same piece of music? No easy task.

A disadvantage of MIDI is that it can sound more artificial or mechanical than sampled dig-
ital audio. Imagine recording someone playing the flute. Sampled digital audio will capture the
sound just as it is played, with all the subtle changes in pitch, tone, resonance, and timing that
may be characteristic of the musician’s style. The digitally recorded audio retains that human
touch. MIDI audio, on the other hand, uses synthesized sounds to recreate each note played on
the flute. Without any added audio “color,” the same MIDI note played from a flute will always

ASIDE: Actually, “wav to MIDI converters”
do exist. They do a fairly good job of converting
an audio file into MIDI messages if the audio
contains only one instrument. However, it is
nearly impossible to separate the frequencies of
multiple instruments played simultaneously.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 233

Supplement on
MIDI:

hands-on
worksheet

WorkingWithMIDI.pdf

234 Chapter 4 Digital Audio Representation

sound exactly the same. However, this disadvantage to MIDI is not as bad as you might imag-
ine. Additional information can be sent in MIDI messages to describe how a note should be
bent (as in pitch bend) or modulated. Most MIDI input devices can detect how hard a note is
played, so the dynamics of a piece can be better reproduced. And MIDI input devices also
allow you to play a piece and capture the exact timing of the performance (or near-exact, down
to the maximum timing quantization level of the input and storage devices). So while it is true
that it is more difficult to capture the personality of an individual’s performance with synthe-
sized sound than with sampled sound, MIDI music still has great expressive capabilities.

A main advantage to MIDI audio is the ease with which you can create and edit a piece
of music. With a MIDI keyboard connected to your computer, you can play a piece, record
it on your computer in MIDI format, and then edit it with a MIDI-editing program. With
such a program, you can change the musical instrument used to play the piece with a click
of the mouse. You can edit individual notes, change the key in which the piece is played,
and fix errors note by note. And because the MIDI format is an industry standard, you can
also easily transport your music from one MIDI device or computer to another.

4.8.2 The MIDI Standard
MIDI is a standard or protocol agreed upon by the makers of musical instruments, comput-
ers, and computer software. The protocol defines how MIDI messages are constructed, how
they are transmitted, how they are stored, and what they mean. The hardware part of the
protocol specifies how connections are made between two MIDI devices, including how
MIDI ports convert data to electrical voltages, and how MIDI cables transmit the voltages.
The software part of the protocol specifies the format and meaning of MIDI messages, and
how they should be stored.

The first formal definition of the MIDI protocol was released in 1983 as the MIDI 1.0 De-
tailed Specification. This protocol evolved from a collaboration of industry representatives
from Roland Corporation, Sequential Circuits, Oberheim Electronics, Yamaha, Korg,
Kawai, and other companies associated with music. The MIDI Manufacturers Association
(MMA) was subsequently created to oversee changes and enhancements to the MIDI stan-
dard. An important part of the MIDI Detailed Specification is the General MIDI standard,
GM-1, adopted by the MMA in 1991. GM standardizes how musical instruments are as-
signed to patch numbers, as they are called. Before the adoption of GM-1, you could create
a musical piece on a certain keyboard or MIDI input device, defining the instruments as you
wanted them. For example, your keyboard might have stored flute as patch number 74. But
you had no assurance that patch number 74 would be interpreted as a flute on some other
MIDI device. With GM-1, 128 standard patch numbers were adopted, as listed in Table 4.5.
The patches are organized into 16 family types with eight instruments in each family. (FX
stands for “special effects.”) General MIDI was updated in GM-2 in 1999 and revised again
in 2003. GM-2 increases the number of sounds defined in the standard and also includes
character information (e.g., karaoke lyrics). GM-2 is backward compatible with GM-1.

4.8.3 How MIDI Files Are Created, Edited, and Played
The first thing you probably want to know is how to create a MIDI file, so let’s begin by
looking at the features of MIDI hardware and software that make this possible.

Hardware devices that generate MIDI messages are called MIDI controllers. MIDI con-
trollers take a variety of forms. A musical instrument like an electronic piano keyboard, a

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 234

4.8 MIDI 235

TABLE 4.5 General MIDI Mapping of Instruments to Patch Numbers

Patch/Instrument Patch/Instrument Patch/Instrument Patch/Instrument

Piano Bass Reed Synth. FX

1. Acoust. Grand Piano 33. Acoustic Bass 65. Soprano Sax 97. FX 1 (rain)

2. Bright Acoust. Piano 34. Electric Bass (finger) 66. Alto Sax 98. FX 2 (soundtrack)

3. Electric Grand Piano 35. Electric Bass (pick) 67. Tenor Sax 99. FX 3 (crystal)

4. Honky Tonk Piano 36. Fretless Bass 68. Baritone Sax 100. FX 4 (atmosphere)

5. Electric Piano 1 37. Slap Bass 1 69. Oboe 101. FX 5 (brightness)

6. Electric Piano 2 38. Slap Bass 2 70. English Horn 102. FX 6 (goblins)

7. Harpsichord 39. Synth. Bass 1 71. Bassoon 103. FX 7 (echoes)

8. Clavichord 40. Synth. Bass 2 72. Clarinet 104. FX 8 (sci-fi)

Chromatic Percussion Strings Pipe Ethnic

9. Celesta 41. Violin 73. Piccolo 105. Sitar

10. Glockenspiel 42. Viola 74. Flute 106. Banjo

11. Music Box 43. Cello 75. Recorder 107. Samisen

12. Vibraphone 44. Contrabass 76. Pan Flute 108. Koto

13. Marimba 45. Tremolo Strings 77. Blown Bottle 109. Kalimba

14. Xylophone 46. Pizzicato Strings 78. Shakuhachi 110. Bagpipe

15. Tubular Bells 47. Orchestral Harp 79. Whistle 111. Fiddle

16. Dulcimer 48. Timpani 80. Ocarina 112. Shanai

Organ Ensemble Synth. Lead Percussive

17. Drawbar Organ 49. String Ensemble 1 81. Lead 1 (square) 113. Tinkle Bell

18. Percussive Organ 50. String Ensemble 2 82. Lead 2 (sawtooth) 114. Agogo

19. Rock Organ 51. Synth. Strings 1 83. Lead 3 (calliope) 115. Steel Drums

20. Church Organ 52. Synth. Strings 2 84. Lead 4 (chiff) 116. Woodblock

21. Reed Organ 53. Choir Aahs 85. Lead 5 (charang) 117. Tailo Drum

22. Accordian 54. Voice Oohs 86. Lead 6 (voice) 118. Melodic Tom

23. Harmonica 55. Synth. Voice 87. Lead 7 (fifths) 119. Synth. Drum

24. Tango Accordian 56. Orchestra Hit 88. Lead 8 (bass � lead) 120. Reverse Cymbal

GUITAR BRASS SYNTH. PAD SOUND FX

25. Acoustic Guitar (nylon) 57. Trumpet 89. Pad 1 (new age) 121. Guitar Fret Noise

26. Acoustic Guitar (steel) 58. Trombone 90. Pad 2 (warm) 122. Breath Noise

27. Electric Guitar (jazz) 59. Tuba 91. Pad 3 (polysynth) 123. Seashore

28. Electric Guitar (clean) 60. Muted Trumpet 92. Pad 4 (choir) 124. Bird Tweet

29. Electric Guitar (muted) 61. French Horn 93. Pad 5 (bowed) 125. Telephone Ring

30. Overdriven Guitar 62. Brass Section 94. Pad 6 (metallic) 126. Helicopter

31. Distortion Guitar 63. Synth, Brass 1 95. Pad 7 (halo) 127. Applause

32. Guitar Harmonics 64. Synth. Brass 2 96. Pad 8 (sweep) 128. Gunshot

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 235

236 Chapter 4 Digital Audio Representation

saxophone, a guitar, or a trumpet can serve as a MIDI controller if it is designed for MIDI.
Devices that read MIDI messages and turn them into audio signals that can be played
through an output device are called MIDI synthesizers. Some MIDI keyboards can serve as
both controllers and synthesizers, which means that they can both generate MIDI messages
and also serve as the sound output device (through which you hear the sound played). Other
MIDI keyboards are silent; that is, they are used only to generate MIDI messages without
creating any audible sound. Many computer sound cards are equipped to synthesize MIDI
audio, and if your sound card doesn’t have this capability, the operating system can provide
a MIDI software synthesizer. You can also buy an external sound card (also called a sound
interface) if you want to upgrade. A sound studio can have a wide range of MIDI compo-
nents and setups that link samplers, effects processors, instruments, mixing consoles, and
more. However, we’ll restrict our discussion in this chapter to a common setup for the av-
erage user: an electronic keyboard connected to a personal computer.

A MIDI keyboard looks like a piano keyboard with extra controls. The number of keys,
controls, and sensitivity features varies with the keyboard. You can find keyboards with
(for example) 25, 32, 49, 61, 76, or 88 keys. (A standard piano has 88 keys.) Some key-
boards can detect the velocity with which you strike a key and add this information to the
MIDI message. Some can detect how hard you hold down a key after it is pressed. These
features make the instrument more sensitive to musical dynamics.

The type of MIDI cable you need depends on the connection type your computer uses.
Older computers sometimes use a 15-pin MIDI/joystick connection at the computer side.
More commonly, a MIDI cable connects to the USB port of the computer, connecting at
the MIDI keyboard with two 5-pin circular connectors, one for the in and one for the out
port. A through-port is also available on some MIDI devices, (to pass data directly through
to another MIDI device). A standard MIDI connection passes data serially at a rate of
31.25 kb/s. High-speed serial ports make it possible to use multiport MIDI interfaces so
that a computer can address multiple MIDI devices at the same time.

A MIDI sequencer is a hardware device or software application program that allows you
to receive, store, and edit MIDI data. Stand-alone hardware sequencers exist for storing and
editing MIDI files. By “stand-alone,” we mean that these devices work independently from
a personal computer. However, we’re assuming that you’re more likely to be working with
a computer, and in this case your MIDI sequencer will be an application program running
on your computer (for example, Cakewalk Music Creator or Cubase). A sequencer captures
the MIDI messages generated by your controller and stores them in General MIDI file for-
mat. Many sequencers allow you to view your MIDI file in a variety of formats—a staff
view showing musical notation, a piano roll view, or an event list, for example, as shown in
Figure 4.25–Figure 4.27.

Closely related to MIDI sequencers are musical notation programs. In musical notation
programs, the emphasis is on creating music files in musical notation, but MIDI capability
is nearly always included. With both sequencers and musical notation programs, it is also
possible to create a MIDI file by inputting musical notes one note at a time. You can do this
using a mouse to click on a picture of a keyboard on your computer screen, or you may be
able to edit MIDI messages directly with an event editor. This isn’t as convenient as play-
ing an actual musical instrument and recording what you play as MIDI, but it works for
small pieces.

A third way to capture a MIDI file is simply to read one in from another source. MIDI
files with no copyright restrictions are widely available on the web or can be purchased as
collections.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 236

4.8 MIDI 237

Figure 4.25 Staff view (from Cakewalk
Music Creator)

Figure 4.26 Piano roll view (from Cakewalk
Music Creator)

Figure 4.27 Event view (from Cakewalk Music Creator)

It’s important to understand the difference between MIDI sequencers and standard dig-
ital audio processing programs—those which work with sampled digital audio. (e.g., Audi-
tion, Logic, Audacity, or Sound Forge). Digital audio processing programs may have only
limited MIDI capability. For example, they may allow you to import a MIDI file, but then
the intention is that you convert the MIDI file into sampled digital audio. Doing the conver-
sion in this direction—from MIDI to, say, WAV or PCM, isn’t too hard. The MIDI file can
be synthesized to digital audio, played by the sound card, recorded back through the sound
card, and saved to a new file. On the other hand, taking a sampled digital audio file and con-
verting it to MIDI would be very difficult. As described above, this would entail identify-
ing where a note begins and ends and what instrument is playing the note, simply on the
basis of the sound samples. That’s nontrivial.

The beauty of MIDI is that it’s so easy to create and edit MIDI files, especially for mu-
sicians. Once you’ve created a MIDI file, you can use your sequencing software to edit it
note by note, measure by measure. This is usually done at a high level of abstraction. Mu-
sicians are accustomed to looking at musical notation in the form of sheet music, and this

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 237

238 Chapter 4 Digital Audio Representation

is the level of abstraction at which they can work in sequencing software. Easy mouse
clicks or menu selections allow you to change the tempo, transpose the key, switch instru-
ments, add or delete individual notes or measures, and correct errors. Complex and inter-
esting musical effects can be created in this way.

4.8.4 MIDI for Nonmusicians
MIDI is not only for musicians. MIDI is a protocol for message passing, and applications
of MIDI are not restricted to music. A system can be designed to read and interpret MIDI
messages in whatever way is desired. For example, MIDI messages can be used to control
complex lights, special effects, and multimedia in a theater. Since its inception, new appli-
cations have continually been added to the MIDI standard. For example, MIDI Show
Control is a command and control language originally designed for theaters and later used
in theme parks rides. MIDI Machine Control is used in recording studios to synchronize
and remotely control recording equipment. The MIDI format has also been applied to poly-
phonic ring tones for mobile phones.

Once you understand how MIDI messages are constructed and communicated, you may
want to experiment with catching a MIDI message and using it to control an activity. Al-
though MIDI messages are usually intended to describe musical notes, they don’t really
have to be interpreted that way. If you intercept a MIDI message, you can interpret it to mean
whatever you want. So if you’re a computer programmer, you can find interesting and cre-
ative ways to use a MIDI device as a controller for something that might have nothing to do
with music.

If you would like to experiment with MIDI’s music, drum, and sound effects capability,
there’s still a lot you can do even without musical training. You can pick out a tune by ear on
a MIDI keyboard and try out the keyboard’s auto-accompaniment feature if one is available.
You can look at your file in the event or piano roll view and try your hand at editing it by
changing notes, changing instruments, adding more notes, changing the timing, and so forth.
You can be quite creative without ever reading a note of music. As you work with MIDI,
you’ll learn something about music terminology and theory. In fact, one of the most com-
mon applications of MIDI is in music education. With MIDI, you can train your ear to rec-
ognize notes, keys, and intervals between notes, or you can play a piece of music and get
feedback on your accuracy. If you’re interested in the musical features of MIDI but don’t
have much background in that area, the next section will help you get started.

4.8.5 Musical Acoustics and Notation
If you’re a musician and can read music, then you’ll already be familiar with most of the
terminology in this section, but you may find it helpful to place your knowledge in the con-
text of digital media. If you’re not a musician, don’t be intimidated. You don’t have to know
how to read or compose music in order to work with MIDI, but it’s good to be familiar with
basic concepts and terminology.

In Western music notation, musical sounds—called tones—are characterized by their
pitch, timbre, and loudness. With the addition of onset and duration, a musical sound is
called a note. The pitch of a note is how high or low it sounds to the human ear. For musi-
cal notes that are simple sinusoidal waves, the higher the frequency of the wave, the higher
the pitch. The range of human hearing is from about 20 Hz to about 20,000 Hz. Actually,

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 238

4.8 MIDI 239

KEY EQUATION

Let g be the frequency of a musical note. Let h be the frequency of a musical
tone n octaves higher than g. Then

h = 2ng

if you test the frequency limits of your own hearing, you’ll probably not be able to hear
frequencies as high as 20,000 Hz. As you get older, you lose your ability to hear very high
frequency sounds.

Different cultures have developed different terminology with regard to music—that is,
different ways of arranging and labeling frequencies within the range of human hearing.
Nearly all cultures, however, base their musical terminology on the following observation:
If the frequency of one note is 2n times of the frequency of another, where n is an integer,
the two notes sound “the same” to the human ear, except that the first is higher-pitched than
the second. For example, a 400 Hz note sounds like a 200 Hz note, only higher. This leads
to the following definition:

The note-by-note scale at which the frequencies between two one-octave-apart notes
are divided varies from culture to culture. In Western culture, 440 Hz is taken as a starting
reference point and is called the note A. The octave between one A and the next higher A
is then divided into twelve notes. (The word octave comes from the fact that there are
eight whole notes in it: A, B, C, D, E, F, G, and again A.) The twelve notes are called A,
A sharp, B, C, C sharp, D, D sharp, E, F, F sharp, G, and G sharp. A sharp can also be
called B flat; C sharp can be called D flat; B sharp can be called E flat; F sharp can
be called G flat; and G sharp can be called A flat. Sharps are symbolized with #, and flats
are symbolized with b. Only the letters A through G are used to label notes. After G, the
next note is A again.

The way these notes look on a piano keyboard is shown in Figure 4.28. There are black
keys and white keys on the keyboard. The sharps are black keys. To show an octave, we
could have started with any note, as long as we end on the same note at the end of the oc-
tave (“the same” in the sense that it is twice the frequency of the first). This is how notes
and their corresponding frequencies are divided in Western music. Other cultures may have
more or fewer notes per octave.

A B C D E F G A

A# C#D# F# G#

Middle C
Figure 4.28 An octave

Given that every twelve notes you double the frequency, if you know the frequency
of a certain note, you can compute the frequency of the succeeding note. Based on the
definition of an octave, start with and multiply each succeeding frequency by some x,f1

f2
f1

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 239

240 Chapter 4 Digital Audio Representation

doing this 12 times to get to . This x will be the multiplier we use to get each successive
frequency. Thus, we can derive x from

That is, the frequency relationship between any two successive notes and , where
immediately follows on the keyboard is

If A has frequency 440 Hz, then A# has frequency ;
B has frequency ; and so forth.

Musical notation is written on a musical staff—a set of lines and spaces, as pictured in
Figure 4.25. The staff has a key signature at the beginning of the piece, telling which notes
are supposed to be played as sharps and flats. (This is another meaning for the term key, as
opposed to a physical key on the keyboard.) It’s good to know this use of the term key as
you work with MIDI. With a MIDI sequencer, it is easy to transpose a piece of music to a
higher or lower key. If you transpose a piece to a higher key, each note is higher, but all the
notes retain their frequency relationship to each other, so the piece sounds exactly the same,
only at a higher pitch. The notes will be moved up on the staff if you look at the music in
staff view after transposing it.

The timbre of a musical sound is its “tone color.” Think about two different instruments
playing sounds of exactly the same basic pitch—say, a violin and a flute. Even though you
can recognize that they’re playing the same note, you can also hear a difference. The
sounds, when produced by two different instruments, have a different timbre. The timbre of
a musical sound is a function of its overtones. A sound produced by a musical instrument is
not a single-frequency wave. The shape and dynamics of the instrument produce vibrations
at other, related frequencies. The lowest frequency of a given sound produced by a partic-
ular instrument is its fundamental frequency. It is the fundamental frequency that tells us
the basic note that is being played. Then there are other frequencies combined in the sound.
Usually, these are integer multiples of the fundamental frequency, referred to as harmonics.
The fundamental frequency is also called the first harmonic. A frequency that is two times
the fundamental frequency is called the second harmonic, a frequency that is three times the
fundamental frequency is the third harmonic, and so forth. The harmonics above the fun-
damental frequency are the sound’s overtones. Theoretically, all harmonics up to infinity
can be produced, but in fact only some of the harmonics for a note are present at any mo-
ment in time, and they change over time, adding even more complexity to the waveform.
The intensity of the different-level harmonics is determined by how the instrument is
played—how a guitar string is plucked, a horn is blown, or a piano key is struck, for exam-
ple. Each instrument produces its own characteristic overtones, and thus its own recogniz-
able timbre.

There are instruments that create inharmonic overtones as well—drums, for example.
These inharmonic overtones make the fundamental frequency unrecognizable, and the
sound is thus more like noise than like a musical note.

Resonance affects the perceived sound of an instrument, as well. When an object at
rest is put in the presence of a second, vibrating object, the first object can be set into
sympathetic vibration at the same frequency. This is resonance. The shape of a musical

466.16 Hz * 1.05946309436 L 493.88 Hz
440 Hz * 1.05946309436 L 466.16 Hz

f2 = 1.05946309436f1

f1
f2f2f1

 x = 412
2 L 1.05946309436

 2 = x12

 2f1 = ((((((((((((f1x)x)x)x)x)x)x)x)x)x)x)x) = f1x12

2f1

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 240

4.8 MIDI 241

instrument—like the tubular shape of a horn or the body of a guitar—can cause the fre-
quencies produced by the instrument to resonate, and in this way some of the harmonics
are strengthened while others may be lessened. Resonance thus has an effect on an in-
strument’s timbre.

The perceived loudness of a musical sound is a function of the air pressure amplitude.
The period covered by a single musical note is called the sound’s amplitude envelope.
The attack covers the moment when the sound is first played and reaches its maximum
amplitude—for example, when a piano key is struck, a guitar is plucked, or a trumpet is
blown. The relatively quick drop in amplitude after the initial attack is called the decay.
Following this decay, the sustain period is the span of time during which the sound contin-
ues vibrating at a fairly even level. If the sound is stopped before it fades away naturally,
the moment when it is stopped is called its release. Each instrument has its own typical
sound envelope, and each individual sound produced by an instrument has a particular en-
velope. For example, a drum beat typically has a sharply peaking attack. A piano note has
a fairly sharp attack as well, sharper if it is struck hard and quickly. A flute generally has a
less sharply peaked attack because it must be blown to create a sound, and the blowing of
a flute is a slower, smoother action than the striking of a key. A piano has a slow, steadily
fading sustain, as compared to an organ, where the sound amplitude fades less during the
sustain period. The general form of an amplitude envelope is shown in Figure 4.29.

Time

Decay

Attack

Sustain

Release

A
m

pl
itu

de

Figure 4.29 Amplitude envelope

4.8.6 Features of MIDI Sequencers and Keyboards
MIDI controllers and sequencers have certain standard features and a variety of addi-
tional options, depending on the sophistication of the equipment. One of the most basic
features is the ability to set patches. A patch number specifies the instrument to be played.
In descriptions of MIDI messages, the patch number is referred to as the program number.
When an instrument is selected on a MIDI keyboard, it is sometimes referred to as a voice.
A bank is a database of patches, each database composed of its own samples.

A MIDI file can be played into any output device that has the ability to synthesize sound
from MIDI data. If your computer has a MIDI-equipped sound card (most do), it can be-
come the output device for playing MIDI. If you have a MIDI keyboard connected to your
computer, you can play a MIDI file through the keyboard’s synthesizer (if it has one) and
hear the sound through the speakers of the keyboard. When you’re working with a MIDI
sequencer, you select which MIDI inputs and outputs you want to use.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 241

242 Chapter 4 Digital Audio Representation

The controls, features, and number of keys on a MIDI keyboard vary from one model to
the next. A polyphonic keyboard is able to play more than one note at a time. For example,
a MIDI keyboard may have 32-note maximum polyphony, which means that it can play 32
notes at the same time. A multitimbral MIDI output device can play different instruments
at the same time. An output device must be polyphonic in order to be multitimbral, but the
maximum number of notes and instruments it can play simultaneously doesn’t have to be
the same. You may be able to set a split-point for your keyboard—a division between two
keys on the keyboard such that options can be set differently above and below that point.
For example, you could designate that the keys above the split-point to sound like one in-
strument, and the keys below the split-point to sound like a different instrument. With a
split-point set, you could play one part with your right hand and it could sound like a piano,
while the part you play with your left hand sounds like a bass guitar.

A touch-sensitive keyboard can detect the velocity with which you
strike a key, encode this in a MIDI message, and control the loudness
of notes accordingly. In addition to sensing velocity, some keyboards
can also sense how hard a key is held down after it is pressed, called
aftertouch. A key that is held down relatively hard after it is pressed
can be a signal that a note should swell in volume as it is sustained—
a realistic effect for horns and brass. Monophonic aftertouch assigns
the same aftertouch value to all notes that are played at the same time.
Polyphonic aftertouch can make one note in a chord grow louder
while other notes played at the same time don’t change in volume.

Two important MIDI terms that are sometimes confused are channel and track. A MIDI
channel is a path of data communication between two MIDI devices. A track is an area in
memory where MIDI data is stored, with a corresponding area on the sequencer’s timeline
where the MIDI notes can be viewed. In a MIDI sequencer’s user interface, the track view
shows you each track separately. You always have to record to a specific track. You can also
record on more than one track simultaneously; you can designate tracks as either MIDI or
audio; and you can mute tracks and listen to them separately on playback. Tracks are
shown in Figure 4.30.

There is a close relationship between channels and tracks, but they are not the same. The
following recording scenarios should help you to understand the difference between a track
and a channel. (Your ability to re-enact these scenarios depends on the features of your
equipment.)

When you play something on your MIDI keyboard, you record it to a certain track.
Then you may want to record something else—something that will be played at the same
time as the first clip. You can rewind to the beginning and record the second clip on the
same track with the first, selecting the option to blend the two recordings rather than have
the second overwrite the first. As an alternative, you can record the second clip onto a dif-
ferent track. What’s the advantage of recording on a different track? The advantage is that
the two clips are stored in separate areas in memory, so you can edit them separately. You
can mute one track and play the other alone. You can change the patch on the two tracks
separately, so that they play different instruments. You can delete either one without
affecting the other.

So how does a channel relate to this? We said above that you can change the patch on the
two tracks separately so that they play different instruments. But you can do this only if the
two tracks are able to play on two different channels. The channel is the path along which
the MIDI messages are passed from the place where they are stored, on your computer, to

ASIDE: To be more precise, a velocity mes-
sage can be interpreted however you like in a
MIDI track. For example, when you play the
MIDI file via a MIDI sampler, you can set the
sampler control to interpret a velocity message
as a change in timbre.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 242

4.8 MIDI 243

the place where they are played, on your keyboard or some other synthesizer. The GM stan-
dard calls for 16 channels on a MIDI device. In your MIDI sequencing software, you can
designate that track 1 plays on channel 1 and track 2 plays on channel 2, and then if tracks 1
and 2 are set to play different instruments, you’ll actually hear two different instruments
played. But if both tracks are set to channel 1, then you’ll hear only one of the two instru-
ments playing both tracks. Figure 4.30 shows two tracks, the first set to channel 1 to play as
a grand piano, and the second set to channel 2 to play as an alto sax. Since they are playing
on separate channels, they can play different instruments.

In the MIDI standard, channel 10 is designated to carry drum and percussion sounds. If
you set a track to record from channel 10, then each key you play at the keyboard will be
recorded as some drum or percussion instrument as defined by the Percussion Key Map
shown in Table 4.6. For example, if you record middle C, C#, and D on channel 10, you’ll
hear the hi bongo, low bongo, and mute hi conga in succession when you play it back.
(Middle C is note 60.)

A sustain pedal can be connected to some keyboards so that you
can delay the release of a note. This pedal works just like the sus-
tain pedal on a piano. Other types of pedals (e.g., sostenato pedal or
soft pedal) can also be added.

A keyboard may also have a pitch bend wheel. The pitch bend
wheel can be slid up or down to move the pitch of a note up or down
as it is being played. The wheel slides back to its original position
when you let it go. If you do this when your instrument is set to

Figure 4.30 Two tracks (from Cakewalk Music Creator)

ASIDE: The sustain pedal causes a sustain
MIDI message to be sent and recorded, but that
message could be interpreted later in whatever
way you want. For example, you could specify
by means of your sampler that a sustain mes-
sage should trigger reverb.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 243

some kind of guitar, it sounds like you’re manipulating the guitar string while you’re play-
ing the note. The wheel has an analogous effect with other instruments.

A metronome is an audible timing device that ticks out the beats as you play. You can
usually turn the metronome on from both the sequencer and the controller. By keeping pace
with the metronome, you can maintain a consistent beat as you play. The sound of the
metronome does not have to be recorded with the music.

A wide variety of changes and effects can be achieved with MIDI sequencing software.
Some of the important features are transposition (changing the key signature), timing quan-
tization (moving notes to more evenly spaced timing intervals), tempo change, and digital
signal processing (DSP) effects like flange, reverb, delay, and echo. With many sequencers,
it is also possible to have digital audio—for example, vocals or sound effects—on one track
and MIDI on another. The tracks can be mixed down to a digital audio file if this is your
final intent.

4.8.7 MIDI Behind the Scenes
4.8.7.1 Types and Formats of MIDI Messages

A MIDI message is a packet of data that encodes an event. MIDI events describe how
music is to be played. There are two main types of MIDI messages: channel messages and
system messages. Channel messages, as the name implies, always contain information rel-
evant to channels. Channel voice messages are the most common, indicating when a note
begins (Note On), when a note ends (Note Off), what the note is, how hard it is pressed
(Velocity), how hard it is held down (Aftertouch), what instrument is played (Program
Change), what channels are activated, and so forth. Channel mode messages tell the MIDI

244 Chapter 4 Digital Audio Representation

TABLE 4.6 Percussion Key Map

Key #/Percussion Sound Key #/Percussion Sound Key #/Percussion Sound

35. Acoustic bass drum 51. Ride cymbal 1 67. High agogo

36. Bass drum 1 52. Chinese cymbal 68. Low agogo

37. Side stick 53. Ride bell 69. Cabasa

38. Acoustic snare 54. Tambourine 70. Maracas

39. Hand clap 55. Splash cymbal 71. Short whistle

40. Electric snare 56. Cowbell 72. Long whistle

41. Low floor tom 57. Crash cymbal 2 73. Short guiro

42. Closed hi-hat 58. Vibraslap 74. Long guiro

43. High floor tom 59. Ride cymbal 2 75. Claves

44. Pedal hi-hat 60. Hi bongo 76. Hi wood block

45. Low tom 61. Low bongo 77. Low wood block

46. Open hi-hat 62. Mute hi conga 78. Mute cuica

47. Low-mid tom 63. Open hi conga 79. Open cuica

48. Hi-mid tom 64. Low conga 80. Mute triangle

49. Crash cymbal 1 65. High timbal 81. Open triangle

50. High tom 66. Low timbal

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 244

4.8 MIDI 245

Types of MIDI messages

Channel messages System messages

Channel voice
messages

Examples:
Note on/off
Velocity
Aftertouch
Pitch bend
Program change
Control change
Bank select

Channel mode
messages

Examples:
Omni mode on/off
Poly mode on/off

Common

Related to timing

Real-time

Related
synchronization

Exclusive

Defined by a
particular
manufacturer

Figure 4.31 Types of MIDI messages

receiving device—the device that plays the sound—what channels to listen to and how to
interpret what it hears. For example, the Omni On message allows the receiver to listen to
messages on any channel. The Mono On message indicates that the receiver is to play only
one note at a time. System messages contain information that is not specific to any particu-
lar channel—for example, messages about timing, synchronization, and setup information.
The general classification of MIDI messages is shown in Figure 4.31.

MIDI messages are transmitted in 10-bit bytes. Each byte begins with a start bit of 0 and
ends with a stop bit of 1. The start and stop bits mark the beginnings and endings of bytes
at the serial port. It’s important to know that they’re there when you compute the data rate
for MIDI messages, but you don’t need to take the start and stop bits into account if you
capture and read MIDI messages through the port. The information part of the data is con-
tained in a standard eight-bit byte, and you read only eight bits at a time for a byte. (For ex-
ample, if you write a C program to capture MIDI messages, you can read the bytes into
variables of type unsigned char, which are eight bits long.)

For each message, one status byte and zero or more data bytes are sent. The status byte
tells what type of message is being communicated. Status bytes can be distinguished from
data bytes by their most significant bit (MSB). The MSB of a status byte is 1, while the
MSB of a data byte is 0. This implies that the value of a status byte always lies between 128
and 255, while the value of a data byte always lies between 0 and 127.

We’ll look closely only at channel voice messages, since these are the most common.
The complete specification of MIDI messages can be found at the MMA website. Channel
voice messages tell what note is played and how it is played, requiring both a status byte
and data bytes. The four least significant bits of each channel voice message tell the chan-
nel on which the note is to be transmitted. (Four bits can encode values 0 through 15, but at
the user level the channels are referred to as 1 through 16, so the mapping is offset by one.)
The four most significant bits of a channel voice message tell what action is to be taken—
for example, begin playing a note, release the note, make the note swell; modulate, pan,
turn up the volume, or create some other effect; change the instrument; or bend the pitch.
Seven channel voice messages are described in Table 4.7. The x before numbers in the sec-
ond column indicate that they are given in hexadecimal. The equivalent binary numbers are
in the third column. From this table, consider what the three-byte message x91 x3C x64

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 245

246 Chapter 4 Digital Audio Representation

would mean. (This would be 10010001 00111100 01100100 in binary.) Hexadecimal is
base 16, so and . The first byte, x91,
indicates “Note on, channel 1” The second byte indicates that the note to be played is note
60, which is middle C. The third byte indicates that the note should be played with a veloc-
ity of 100.

In addition to the messages shown in Table 4.7, it is also possible to signal the selection
of a new bank of patches using a sequence of control change messages followed by appro-
priate data bytes.

4.8.7.2 Transmission of MIDI Messages

MIDI messages are transmitted serially in 10-bit bytes at a rate of 31.25 kb/s. Each message
is a data packet that begins with 0 for the start bit and ends with 1 for the stop bit. In between,
the data is transmitted from the least to the most significant bit. Each message has a status byte
and zero or more data bytes. Usually, there are two or three data bytes, but there can be even
more. Think about what this implies. A Note On message requires three 10-bit bytes. That’s
30 bits. What if you have a piece of piano music that has a single note being played by the right
hand and a three-note chord being played by the left hand—all simultaneously? Now you have
four notes at 30 bits each, or 120 bits. At a rate of 31.25 kb/s, it takes approximately 0.004 sec-
onds to transmit the notes—about 0.001 seconds per note (and we haven’t even accounted for
the Note Off messages). If the time between notes isn’t too long, it won’t be detected by the
human ear, so the notes sound like they’re being played at the same time. But we haven’t con-
sidered other messages that might be pertinent to these notes, like pitch bend or control
change. Rolling the pitch bend wheel on the keyboard generates tens, or sometimes even hun-
dreds of messages. With the relatively slow serial bit rate, the number of messages can start to
clog the transmissions. When this happens, there is a audible lag between notes.

Running status is a technique for reducing the amount of MIDI data that needs to be sent
by eliminating redundancy. The idea is simple. Once a status byte is communicated, then it
doesn’t have to be repeated as long as it still applies to the data bytes that follow. For
example, if you have a three-note chord requiring that three Note On messages be sent in a

x64 = 6 * 16 + 4 = 100x3C = 3 * 16 + 12 = 60

TABLE 4.7 Channel Voice Messages

Message

Note On x9n 1001 ---- Note being played and velocity with which the key
is struck (two bytes)

Note Off x8n 1000 ---- Note being released and velocity with which key is
released (two bytes)

Aftertouch for xAn 1010 ---- Note, pressure (two bytes)
one key

Aftertouch for xDn 1101 ---- Pressure (one byte)
entire channel

Program change xCn 1100 ---- Patch number (one byte)

Control change xBn 1011 ---- Type of control (e.g., modulation, pan, etc.) and
control change (two bytes)

Pitch bend xEn 1110 ---- The range of frequencies through which the pitch is
bent (two bytes)

Status Byte in Hex
(n is channel) Status Byte in Binary Information in Data Bytes

Supplement on
MIDI:

programming
exercise

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 246

CapturingAndInterpretingMIDIMessages.pdf

4.8 MIDI 247

Status byte
note on
channel 1

Data byte
velocity 39

Data
streamData stream without running status (above)

Data
stream

x9 x1x3 xCx2 x7x9 x1x4 x2x2 x8x9 x1x4 x4x2 x5

x9 x1x3 xCx2 x7x2 x8 x4 x2x4 x4x2 x5

Data stream with running status (above)

Notes: Start and stop bits not shown.
 x indicates hexadecimal representation

Data byte
note C

Figure 4.32 Running status

row, all to be transmitted on the same channel, then the status byte for Note On is given
only once, followed by the notes and velocities for the three notes to be played. A compar-
ison of the bit streams is given in Figure 4.32.

4.8.7.3 Synthesized Sound

The device that reads and plays a MIDI file—a sound card or a MIDI keyboard, for
example—must be able to synthesize the sounds that are described in the messages. Two
methods for synthesizing sound are frequency modulation synthesis (FM synthesis) and
wavetable synthesis.

FM synthesis is done by performing mathematical operations on sounds that begin as
simple sinusoidal frequencies. The operations begin with a carrier frequency which is
altered with a modulating frequency. Assume that the original frequency can be modeled
by a sinusoidal function. This frequency can be altered in complex and interesting ways by
making another sinusoidal function an argument to the first—e.g., taking a sine of a sine.
The outer function then can be multiplied by an amplitude envelope function that models
the kind of amplitude envelope shown in Figure 4.29. Additional functions can be applied
to change how the sound is modulated over time, thereby creating overtones. FM synthesis
can capture the timbre of real instruments fairly well, and it can also be used to create in-
teresting new sounds not modeled after any particular musical instrument. Sound cards can
use FM synthesis as a relatively inexpensive way to produce MIDI.

Wavetable synthesis is based on stored sound samples of real instruments. The software
or hardware device in which the sounds are stored is called a sampler. (See Figure 4.33.)
Wavetable synthesis is more expensive than FM synthesis in the amount of storage it
requires, but it also reproduces the timbre of instruments more faithfully. Because of its
greater fidelity, wavetable synthesis is generally preferred over FM synthesis, and it is made
affordable by methods for decreasing the number and size of samples that must be stored.

Let’s consider the number of samples that would have to be stored for an instrument,
and how this number could be reduced. Is one sample enough to represent an instrument?
Do you need a sample for each note played by an instrument? The answer actually lies
somewhere in between. Although it’s possible to take a single sample and shift its pitch
with mathematical operations, if the pitch is shifted too far the sample begins to lose the
characteristic timbre of the instrument. An instrument’s timbre results in part from the

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 247

248 Chapter 4 Digital Audio Representation

overtones of notes, appearing at frequencies higher than the fun-
damental. Shifting the pitch can cause these overtones to be
aliased, inserting false frequencies into the sample. Thus, numer-
ous samples of each instrument are stored—but it isn’t necessary
to store a sample for each note. Instead, the range of notes is di-
vided into regions, called key splits. One sample is taken per key
split, and then all other notes within the split are created by pitch-
shifting this sample.

Other ways have been devised to reduce the storage requirements
for sampled sound. The size of the samples themselves can be reduced. Specifically, only a
small representative sample of a note’s sustain section has to be recorded. When the sam-
ple is played, a loop (possibly with some fading) is created over this section to make it the
appropriate length. Digital filtering techniques can be applied to improve the accuracy of
pitch shifting such that key splits can be larger. Finally, samples can also be compressed in
ways that preserve their dynamic range. With these combined techniques, wavetable syn-
thesis has become affordable enough to be widely adopted.

Figure 4.33 Software digital sampler (from Reason)

ASIDE: Some people prefer the term key
groups rather than key splits to refer to groups
of samples because key splitting has another
meaning in the context of assigning patches to
keys on a keyboard. In that context, key split-
ting refers to the process of splitting up a key-
board so that different instruments are associ-
ated with the playing of different regions.

EXERCISES AND PROGRAMS

1. Convert 160 dB_SPL (damage-to-eardrum level) to air pressure amplitude in Pa.
Show your work.

2. Convert 20 Pa (approximately the air pressure level of very loud music) to dB_SPL.
Show your work.

3. What is the dBFS equivalent of a 16-bit sample value of 5000?

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 248

249

4. If the frequency of a note B is about 494 Hz, what is the frequency of the next note E
up the scale from this B?

5. If the frequency of a note A is about 440 Hz, what’s the frequency of an A two octaves
below the 440 Hz A?

6. What does this MIDI message xC2 x39 say?

7. What is the savings in bytes for a sequence of MIDI messages that has six notes played
simultaneously, using running status instead of a Note On message for each note?

8. The fast Fourier transform assumes that a wave is periodic. What does it assume to be
the length of the period when the FFT uses a window of 4096 samples on a file with
a sampling rate of 44.1 kHz? What’s the fundamental frequency? What’s the third
harmonic frequency?

9. Audio aliasing interactive tutorial, worksheet, and mathematical modeling exercise,
online

10. Audio dithering interactive tutorial, worksheet, and mathematical modeling exercise,
online

11. Noise shaping mathematical modeling exercise, online

12. -law encoding interactive tutorial, programming exercise, and mathematical model-
ing exercise, online

13. Fourier transform interactive tutorial, worksheet, and programming exercise

14. Comparison of Fourier and discrete cosine transforms interactive tutorial and
worksheet

15. Windowing functions interactive tutorial, worksheet, and mathematical modeling
exercise

16. Root-mean-square amplitude mathematical modeling worksheet

m

APPLICATIONS
1. By generating single-frequency tones in an audio processing program, identify the

highest and lowest frequencies you’re able to hear.
2. Generate a simple frequency tone of x Hz. Generate another at 2x Hz. Mix them into

one file. Play them. What do you expect to hear? What do you hear? Make another
wave that is 3x the frequency of the first. What do you expect to hear when you play
it together with the first wave? Play the mixed waves to confirm your prediction.
Make another wave that is not an integer multiple of the first. What do you expect to
hear when you play it together with the first wave? Play the mixed waves to confirm
your prediction.

Examine the features of your audio processing program and try the exercises
below with features that are available. You should be able to find sample WAV
files on the web to experiment with.

3. Can you generate a single-frequency tone in your audio processing program at an ar-
bitrary sampling rate? If so, create a file with a sampling rate of 1000 Hz and try to
generate a tone that is 600 Hz. What happens? Why?

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 249

250

4. Can you get a frequency analysis and/or a spectral view of sound waves? If so, look
at some sound waves and analyze the information given to you in these views. Select
different portions of the file and look at the frequency analysis. Play the file and watch
the frequency analysis change over time. Can you change the window size and/or
windowing function for the frequency analysis? If so, try different sound files, win-
dow sizes, and windowing functions and observe the results.

5. Change an audio file to a raw format. Examine the values in the file.
6. Can you reduce the bit depth of an audio file in your audio processing program? If so,

experiment with bit depth reduction. Reduce the bit depth of a file, and then listen to
it. At what bit depth do you get noticeable quantization distortion? Find places where
values are reduced to 0 and listen to how these sections sound.

7. Try reducing an audio file from 16 to 8 bits per sample, with no dithering. Then for
comparison, take the original audio file and save it in an 8-bit -law encoded for-
mat. Compare the two versions by listening to them. Can you hear the difference in
quality? (Try a piece of music that has a wide dynamic range, and listen with good
earphones.)

8. Does your audio processing program give you statistics regarding an audio file? If so,
look at the RMS amplitude and histograms of an audio file. Interpret them as they
relate to the audio file.

9. Working with audio, hands-on worksheet, online
10. Working with audio and MIDI in Chuck, worksheet, online
11. Working with audio and MIDI in MAX/MSP, worksheet, online
12. Working with MIDI, hands-on worksheet, online
13. Capturing and interpreting MIDI signals, programming exercise, online
Additional exercises or applications may be found at the book or author’s websites.

REFERENCES

Print Publications
Adobe Creative Team. Adobe Audition 2.0 Classroom in a Book. Berkeley, CA: Adobe

Press, 2006.

Cutler, C. C. 1960. Transmission Systems Employing Quantization. U.S. Patent
No. 2,927,962.

Huntington, John. Control Systems for Live Entertainment, 2nd ed. Oxford: Focal Press,
2000.

Ifeachor, Emmanuel C., and Barrie W. Jervis. Digital Signal Processing: A Practical
Approach. Addison-Wesley Publishing, 1993.

Kientzle, Tim. A Programmer’s Guide to Sound. Reading, MA; Addison-Wesley Developers
Press, 1998.

Kirk, Ross, and Andy Hunt. Digital Sound Processing for Music and Multimedia. Oxford:
Focal Press, 1999.

Lehrman, Paul D., and Tim Tully. MIDI for the Professional, New York: Amsco Publica-
tions, 1993.

Loy, Gareth. Musimathics: The Mathematical Foundations of Music. Vols. I and II.
Cambridge, MA: The MIT Press, 2006.

m

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 250

251

Messick, Paul. Maximum MIDI: Music Applications in C��. Greenwich: Manning Publi-
cations, 1998.

Penfold, R. A. Electronic Music and MIDI Projects. Kent, UK: PC Publishing, 1994.

Petelin, Roman, and Hury Petelin. Cool Edit Pro 2 In Use. Wayne, PA: A-List Publishing,
2003.

Petelin, Roman, and Hury Petelin. Adobe Audition: Soundtracks for Digital Video. Wayne,
PA: A-List Publishing, 2004.

Pohlmann, Ken C. Principles of Digital Audio, 4th ed. New York: McGraw-Hill, 2000.

Phillips, Dave. Linux Music and Sound. San Francisco, CA: No Starch Press, 2000.

Roads, Curtis. The Computer Music Tutorial. Cambridge, MA: The MIT Press, 1996.

Roberts, Lawrence G. February 1962. “Picture Coding Using Pseudo-Random Noise.”
IEEE Transactions on Information Theory 8, 2: 145–154.

Rothstein, Joseph. MIDI: A Comprehensive Introduction, 2nd ed. Madison, WI: A-R
Editions, 1995.

Schuchman, L. December 1964. “Dither Signals and Their Effect on Quantization Noise.”
IEEE Transactions on Communications 12, 4: 162–165.

Smith, Julius O., III. Mathematics of the Discrete Fourier Transform (DFT) with Audio
Applications. 2nd ed. Seattle: Book Surge Publishing, 2007.

Smith, Steven W. Digital Signal Processing: A Practical Guide for Engineers and Scien-
tists. Burlington, MA: Elsevier Science, 2003.

Tranter, Jeff. Linux Multimedia Guide. Cambridge, MA: O’Reilly, 1996.

Winkler, Todd. Composing Interactive Music: Techniques and Ideas Using MAX.
Cambridge, MA: The MIT Press, 1998.

Websites
MIDI Manufacturers Association, MMA.

http://www.midi.org/

ChucK: Strongly-timed, Concurrent, and On-the-fly Audio Programming Language.
http://chuck.cs.princeton.edu/

See references in previous chapters for additional sources on multimedia and digital
signal processing applicable to this chapter.

M04_BURG5802_01_SE_C04.QXD 7/2/08 12:19 PM Page 251

