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OBJECTIVES FOR CHAPTER 3
• Know the important file types for digital image data by name, basic format, and

application.
• Understand the difference between fixed-length and variable-length encoding

schemes.
• Understand the implementation and application of LZW compression, Huffman

encoding, and JPEG compression.
• Understand the notation, motivation, and application of luminance/chrominance

downsampling.
• Understand the motivation, implementation, and application of a variety of

indexed color algorithms and the differences among them.
• Understand the implementation and application of a variety of dithering

algorithms and the differences among them.
• Understand how pixel point processing is done in digital image processing.
• Understand how convolutions are applied in filtering for enlarging, reducing, or

sharpening images.
• Understand the mathematics and application of histograms.
• Understand the mathematics of resampling.

3.1 TOOLS FOR DIGITAL IMAGE PROCESSING
In Chapter 2, we examined how image data is captured and represented. We now turn to
digital image processing—what you can do with images to refine them for creative or prac-
tical purposes.

Chapter 3 begins with a brief overview of the tools you need to work with digital
images—cameras, scanners, printers, and application programs. The focus of the chapter,
however, is on the mathematics and algorithms that make these tools work.

Image processing programs give you great power to alter bitmap images in interesting
and creative ways. These tools do a lot of the work for you, and you don’t need to know all
the underlying mathematics to use them effectively. Then what motivates us to learn the
science and mathematics upon which the tools are based? One motivation is that someone
needs to create these tools and application programs to begin with, and knowing the science
and mathematics of digital media technology makes it possible for you to contribute to its
development. A second, more immediate, motivation for looking behind the scenes is that
it gives you the ability to work on digital images at a lower level of abstraction. You can
create digital image files “from scratch” using programs that you write yourself, or you can
take raw image data created with the standard tools and alter it with your own programs.

Let’s begin now with your work environment.
To create an original digital image, you can use a digital camera, a scanner, or a paint or

image processing program.

I want to reach that state of condensation of
sensations that constitutes a picture.
—Henri Matisse3
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3.1 Tools for Digital Image Processing 125

Digital cameras come in three basic types—point-and-shoot, prosumer, and profes-
sional level. Point-and-shoot digital cameras are what is called “consumer level”—less ex-
pensive, easy to use, compact, but with few options. These cameras don’t give you much
control over pixel dimensions, compression, and file type. There might be only one possi-
ble image size, in pixel dimensions, and the images might all be saved in JPEG format. A
prosumer camera—which lies between the consumer and professional levels in quality and
expense—has more options of pixel dimensions, file type, compression levels, and settings
such as white balance, image sharpening, and so forth. Professional level digital cameras
are usually single-lens reflex cameras (SLR). In an SLR camera, when you look through the
viewfinder, you’re seeing exactly what the lens sees, whereas in a prosumer or point-and-
shoot camera your view is offset from the lens’s view. SLR cameras have high-quality, de-
tachable lenses, so that you can change lenses, using different focal lengths for different
purposes. A disadvantage of SLR cameras is the weight and size compared to point-and-
shoot.

A digital image makes its way to your computer as a file by means of a physical or wire-
less connection or by means of a memory card that can be inserted into a card holder on the
computer or printer. Common physical connections are USB or IEEE1394 (Firewire).
Memory cards—for example, CompactFlash—can be inserted into adaptors that fit in the
PCMCIA port of a computer. The number of images you can fit on a memory card depends
on the size of the card, the pixel dimensions, and the file type of the images. If you want to
take a lot of pictures with high pixel dimensions and little or no compression, you need a
large memory card, a gigabyte or more.

When you have a choice of pixel dimensions in your camera, you should consider how
much memory you have in your storage medium, how many pictures you want to take at
once, and how you want to use your digital images. High pixel dimensions give you a lot
of detail to work with, but the pictures take up a lot of memory. The pixel dimensions
offered by your camera might also imply different aspect ratios. The aspect ratio of a digital
image is the ratio of the width to the height, which can be written a : b. Pixel dimensions of

, for example, give an aspect ratio of 4 : 3. If you want to print your image as
, you’ll have to adjust the aspect ratio as you edit the image.

You can also capture a digital image using a scanner. A scanner is like a copy machine
that turns the copy into a file of digital data. Like a digital camera, a scanner takes samples
at evenly spaced points. The number of samples it takes in the horizontal and vertical dimen-
sion equates to the pixel dimensions of the image. The object being scanned is a physical
object with dimensions that can be measured in inches or centimeters. Thus, we can talk of
the resolution of a scanner in pixels per inch or centimeters per inch. (Some people use the
term dots per inch—DPI—with regard to scanners, but pixels is a better term, since the scan-
ner is saving the information as pixels in a file.) A scanner has a maximum resolution, lim-
ited by the number of sensors it has. You may be allowed to choose a higher resolution than
the scanner can physically produce, but in that case the additional pixels are interpolated.
High-quality scanners have resolutions of pixels per inch and higher.

A third way to create a digital image is through a paint, draw, or image processing pro-
gram. A paint program, sometimes called a raster graphics editor, allows you to create bitmap
images with software tools that simulate pencils, brushes, paint buckets, type tools, and more.
Paint Shop Pro and Microsoft Paint are two examples. A drawing program gives you more
facilities for vector graphics (e.g., Illustrator and Freehand). Image processing programs 
(e.g., Photoshop and GIMP) have many of these same tools as paint and draw programs and
even more features for editing digital images you may have created through a camera or

1200 � 1200

8– * 10–
640 � 480
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126 Chapter 3 Digital Image Processing

scanner. The distinction between paint, drawing, and image processing programs is not a
sharp one since the tools overlap. These programs can be very sophisticated and powerful—
sometime expensive—but freeware and shareware versions also exist (e.g., GIMP).

3.2 DIGITAL IMAGE FILE TYPES
If you take a picture with a digital camera or scan a photograph with a digital scanner,
you’ll have a choice of file types in which to save the image. You’ll also have a choice of
file types when you save an image in an image processing, paint, or drawing program. Not
all color modes can be accommodated by all file types, and some file types require that the
image be compressed while some do not. Some of the image file types, identified by the
suffix on the file name, are .tiff (also .tif ), .jpg (also .jpeg), .gif, .png, and .bmp. Our conven-
tion in this book is to refer to these file types using all capital letters, such as GIF, since the
suffixes can take multiple forms.

Table 3.1 lists some commonly used file formats, categorized into bitmap images, vec-
tor graphics, and a hybrid of the two, sometimes called metafiles. Bitmap images are listed
first in the table. The four most important things to know about a bitmap filetype are its
color model (e.g., RGB, CMYK, or indexed color); its bit depth; its compression type, if
any (e.g., LZW, RLE, or JPEG); and the operating systems, browsers, and application soft-
ware that support it. The possible bit depths for bitmap images include 1, 4, 8, 16, 24, 32,
48, and 64 bits. A 1-bit bitmap image uses only black and white. An 8-bit grayscale image
allows 256 shades of gray (including pure black and white). Some file types allow 16-bit
grayscale. Bitmap files in RGB and CMYK color mode use 24 bits per pixel—one byte for
each of three color channels. Bitmap files in indexed color mode generally use 8 bits (or
more) per pixel to store an index into a color table, called a palette (although the number of
bits can vary).

Because they can be compressed to a small size, GIF files (Graphics Interchange Format)
are commonly used for images presented on the web. GIF files allow only 8-bit indexed
color. For this reason, they are most suitable for poster-like or cartoon-like images and for
photographic images that don’t require more than 256 colors. GIF files use lossless LZW
compression (discussed below). GIF files support transparency in that you can choose a color
from the color palette and designate it to be transparent. This is commonly done for the back-
ground of an image. Animated GIF files can be created by sequences of single images.

Like GIF files, JPEG files (Joint Photographic Experts Group) are also widely used on
the web. They are good for continuous tone photographic images, where colors change
gradually from one point to the next and many colors are needed for detail and clarity. By
JPEG files, we mean files that are compressed with the JPEG compression algorithm (ex-
plained later in this chapter). The file format is actually called JFIF for JPEG File Inter-
change Format. You can often select the level of compression you want when you save and
compress the file, making a choice between file size and level of detail. GIF files can be
saved in an interlaced format that allows progressive download of web images. In
progressive download, a low-resolution version of an image is downloaded first, and the
image gradually comes into focus as the rest of the data is downloaded.

BMP files are a bitmap format that can be uncompressed, or compressed with RLE. BMP
files are in 1-bit black and white; 8-bit grayscale; 16-, 24- or 32-bit RGB color; or 4- or 
8-bit indexed color. (Indexed color will be discussed below.) BMP files don’t support CMYK
color. Transparency is supported for individual pixels as in GIF files. Alpha channels are
supported in new versions of BMP. An alpha channel is a channel like R, G, and B—using
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3.2 Digital Image File Types 127

TABLE 3.1 Common File Types for Vector Graphics, Bitmapped Images,
and Metafiles

File Suffix
Our 
Abbreviation File Type Characteristics

Bitmap Images

.bmp BMP Windows bitmap 1 to 24-bit color depth, 32-bit if alpha channel is used. Can
use lossless RLE or no compression. RGB or indexed color.

.gif GIF Graphics Interchange
Format

Used on the web. Allows 256 RGB colors. Can be used for
simple animations. Uses LZW compression. Originally
proprietary to CompuServe.

.jpeg or .jpg JPEG Joint Photographic Experts
Group

For continuous tone pictures. Lossy compression. Level of
compression can be specified.

.png PNG Portable Network Graphics Designed as an alternative to .gif files. Compressed with
lossless method. 1 to 64-bit color with transparency channel.

.psd PSD Adobe Photoshop Supports a variety of color models and bit depths. Saves
image layers created in photographic editing.

.psp PSP Corel Paint Shop Pro Similar to .psd.

.raw Photoshop Uncompressed raw file. Could be black and white, grayscale,
or RGB color.

.tif or .tiff TIFF Tagged Image File
Format

Often used for traditional print graphics. Can be compressed
with lossy or lossless methods, including RLE, JPEG, and
LZW. Comes in many varieties.

.ai AI Adobe Illustrator Proprietary vector format.

.swf SWF Shockwave Flash Proprietary vector format; can contain stills, animations,
video, and sound.

.cdr CDR Corel Draw Proprietary vector format.

.dxf DXF AutoCAD ASCII Drawing
Interchange Format

ASCII text stores vector data.

Metafiles

Vector Graphics

.cgm CGM Computer Graphics Metafile ANSI, ISO standard.

.emf, .wmf EMF, WMF Enhanced metafile and
Windows metafile

Windows platform.

.eps EPS Encapsulated Postscript Used for output to Postscript device.

.pdf PDF Portable Document Format An open standard working toward ISO standardization.
Windows, MAC, Unix, Linux.

.pict PICT Picture Macintosh. Can use RLE or JPEG compression. Grayscale,
RGB, CMYK, or indexed color.

.wmf WMF Windows metafile 16-bit format. Can be binary or text. Not portable to other
platforms.
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128 Chapter 3 Digital Image Processing

the same number of bits (which accounts for the 32-bit RGB color version). The bits in the
alpha channel indicate the level of transparency of each pixel.

PNG files (Portable Network Graphics) are similar to GIF files in that the format and com-
pression method used lend themselves to poster-like images with a limited number of colors.
PNG works well for photographic images also, although it doesn’t achieve the compression
rates of JPEG. PNG files allow many variations, including 1, 2, 4, 8, or 16 bits per pixel
grayscale; 1, 2, 4, or 8 bits per pixel indexed color; and 8 or 16 bits per channel RGB color.
PNG files allow the use of alpha channels. With the addition of an alpha channel, the largest
bit depth of a PNG file is 64 bits per pixel (4 channels * 16 bits/channel). PNG uses a lossless
compression algorithm that works by predicting the color of a pixel based on previous pixels
and subtracting the predicted color value from the actual color. PNG files have an optional in-
terlaced format that allows progressive download. PNG does not support animation.

TIFF files (Tagged Image File Format) allow for a variety of color models, including
black and white, grayscale, RGB, CMYK, YCbCr, and CIELab. Either 8 or 16 bits per
channel can be used for multi-channel color models. A variety of compression methods can
be applied—including LZW, RLE, or JPEG—or a TIFF file can be uncompressed. Multi-
ple images can be included in one image file. TIFF files have other options, which can
sometimes create problems in their portability because not all applications that read TIFF
files are implemented to support all the variations.

GIF, JPEG, PNG, and TIFF are usable within a wide variety of operating systems 
(e.g., Windows, Mac, and Unix/Linux), web browsers, and application programs 
(e.g., Photoshop and GIMP). A number of proprietary file types are also listed in the table.
These are supported by certain application programs—e.g., PSP for Paint Shop Pro and
PSD for Photoshop.

Also listed for Photoshop is its .raw file format. This format is useful if you want to
work with an image file at a low level of abstraction—perhaps writing a program to imple-
ment LZW compression, a convolution for unsharp masking, or indexed color—algorithms
described later in this chapter. In Photoshop, you can save the image as a .raw file such that
you have just pixel values (black and white, grayscale, or RGB color, depending on what
you want to do). You can then read these values into a program that you’ve written yourself
and experiment with how the algorithms work.

There’s a difference between Photoshop’s .raw file format and RAW files that come
from your digital camera. The term RAW image file does not refer to a specific file format.
Each digital camera can have its own RAW file format that depends on the camera’s engi-
neering. In general, a RAW image file contains unprocessed image data exactly as it is de-
tected by the camera’s sensors—without any color interpolation, white balancing, or con-
trast adjustments. For example, consider a one-CCD camera that uses a demosaicing
algorithm like the one described in Chapter 2. For such a camera, if you choose to save an
image in the RAW format, you have color information for only one of the three color chan-
nels from each of the photosites. The camera doesn’t do the demosaicing before saving the
data. This generally gives you 12 or 14 bits per photosite. This gives you the rawest data
possible, allowing you to do your own adjustments in whatever fine-tuned way you like.
However, because the RAW file is proprietary to the camera, you’ll need special software
to read the file when you port the file to your computer.

We turn now to vector graphic file formats and metafiles. As you recall from Chapter 2,
vector graphic files are suitable for images with clear edges and cleanly separated colors—
images that can be described in terms of geometric shapes. A vector graphic file for a poster-
type image generally is smaller than a bitmap file for the same image. The size of a vector
graphic file is proportional to the number of graphical objects in it, while the size of a bitmap
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3.2 Digital Image File Types 129

LineType 1;
LineWidth 2.0;
LineColr 1;
Line (200,400) (200,600);
Circle (500,600),430;

Figure 3.1 Excerpt from a
vector graphic file

file always depends only on the pixel dimensions, bit depth, color mode, and finally com-
pression. Vector graphic files have the additional advantage of being rescalable without
aliasing effects. This is because the image is rendered at the time it is displayed on whatever
scale is indicated at that moment and at the maximum resolution of the display device.

Vector graphic files store image data in terms of geometric objects. The objects are spec-
ified by parameters like line styles, side lengths, radius, color, gradients, etc. This informa-
tion can be stored in either binary or text form. If a vector graphic file is text-based, you can
look at it in a text editor and read the statements that define the objects. It is possible to cre-
ate or alter a text-based vector graphic file “by hand” with a text editor if you know the
grammar and syntax of the object definition, but working this way requires a lot of atten-
tion to detail, and you usually don’t need to edit by hand since drawing programs give you
such powerful high-level facilities for creating and manipulating vector graphic objects. A
textbased vector graphic file might have statements like those shown in Figure 3.1.

Vector graphic files can also be stored in binary form. Typically, these binary files con-
sist of a header identifying the file type and giving global image parameters, a palette
(optional), the image data defined in variable-length records, and an end-of-file symbol.
Fortunately, editing binary vector graphics files by hand is rarely necessary.

Some file formats combine vector graphics with bitmap images. These are called
metafiles. The term metafile evolved from attempts to create a platform-independent spec-
ification for vector graphics. The Computer Graphics Metafile (CGM), originally standard-
ized under the International Standards Organization (ISO) in 1987 and evolving through
several revisions, is an example of a standardized metafile format designed for cross-
platform interchange of vector graphics, with the optional inclusion of bitmaps. CGM files
can be encoded in human-readable ASCII text or compiled into a binary representation.
The original CGM was not widely supported by web browsers, but in recent years, the
World Wide Web Consortium (W3C) has supported the development of WebCGM, which
is designed to incorporate the CGM vector format into web pages using XML. An alterna-
tive to WebCGM for web vector graphics being developed by W3C is Scalable Vector
Graphics (SVG). SVG images can be animated. Generally, WebCGM is considered appro-
priate for technical graphics and SVG is preferable for graphic arts.

You might want to try opening some vector graphic files in a text editor to see if you can
decipher them. Because the CGM standard defines both a text and a binary format, your
ability to read a CGM file depends on where and how the file was originally made. If you
try opening a CGM file in a text editor, you’ll probably discover that it has been encoded
in binary, and you won’t be able to read it. However, file readers exist for CGM raw files
that can give you access to the individual objects.

One of the most widely used types of metafile is PDF (Portable Document Format).
PDF files can be used on all major operating systems—Mac, Windows, Unix, and Linux.
PDF documents can contain text, bitmap images, vector graphics, and hyperlinks. The text
is searchable.
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130 Chapter 3 Digital Image Processing

Microsoft Windows Metafile Format (WMF) is a combined vector/bitmap format. Para-
meter descriptions of graphical objects in WMF files are stored in 16-bit words. The re-
vised version of WMF, called Enhanced Metafile Format (EMF), uses 32-bit words and has
more graphics primitives. WMF and EMF files are stored as binary and are therefore not
directly readable.

SWF, the proprietary vector graphic format of Flash (formerly produced by Macrome-
dia and bought by Adobe), is currently a very popular file format that is used across a vari-
ety of platforms. Its wide use arises from that fact that it allows for inclusion of not only
bitmaps but also animated vectors, audio, and video, within a small, compressed file size.
Browser plugins that handle SWF files have become standard. SWF files are stored in bi-
nary form and thus are not readable as text.

Among those listed in Table 3.1, the easiest vector graphic files to read as text are DXF,
EPS, and Adobe Illustrator files. Adobe Illustrator files are similar to EPS files, having been
designed as a variation of EPS. Both file types can represent either vector objects or bitmaps.

It is possible to compress vector graphic files, and compression is important to file types
that include animations, video, and sound. For example, SWF files, which are stored as bi-
nary data, use zlib compression, a variant of LZW. We will look at LZW and other com-
pression methods in a later section of this chapter.

3.3 INDEXED COLOR
In image processing programs, it is likely that you will often work in RGB mode and 24-
bit color. This corresponds to the color system and bit depth of most current computer dis-
plays. However, there are times when you may want to reduce the number of colors used in
an image file. You could have a number of motivations for reducing the bit depth—and thus
the number of representable colors. It may be the case that your picture doesn’t use a large
number of colors; slight differences in color may not be important; or you may have con-
straints on the file size of your picture because of the time it would take to download it or
the space it would take to store it. The process of reducing the number of colors in an image
file is called color quantization. In image processing programs, the color mode associated
with color quantization is called indexed color.

Color quantization begins with an image file stored with a bit depth of n and reduces the
bit depth to b. The number of colors representable in the original file is , and the number
of colors representable in the adjusted file will be . As an example, let’s assume your
image is initially in RGB mode with 24-bit color, and you want to reduce it to 8-bit color.

The process of color quantization involves three steps. First, the actual range and num-
ber of colors used in your picture must be determined. If your image is stored initially in
RGB mode with 24-bit color, then there are possible colors. The ques-
tion is, which of these colors appear in the picture?

The second step in color quantization entails choosing colors to represent those that
actually appear in the picture. For our example, the adjusted picture would be limited to

colors.
The third step in color quantization is to map the colors in the original picture to the col-

ors chosen for the reduced bit-depth picture. The b bits that represent each pixel then be-
come an index into a color table that has entries, where each entry is n bits long. In our
example, the table would have 256 entries, where each entry is 24 bits long.

One simple way to achieve a reduction from a bit depth of n to a bit depth of b is called
the popularity algorithm. In the popularity method, the colors that appear most often in2b

2b

28 � 256

2b

224 = 16,777,216

2b
2n
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3.3 Indexed Color 131

the picture are chosen for the reduced-bit depth picture. A straightforward way to map one
of the original colors to the more limited palette is by finding the color that is most similar
using the minimum mean squared distance. More precisely, let the colors in the reduced
color palette be given by their RGB color components such that the color has compo-
nents , , and for . In our example, this means that each of the 256 rows
in our color look-up table corresponds to one of the original 16,777,216 colors, decom-
posed into its three RGB color components. For an arbitrary pixel in the original image
with color components r, g, and b, we want to find the color at index i that minimizes

.
The disadvantage of the popularity algorithm is that it completely throws out colors that

appear infrequently. A picture with one dramatic spot of red in a field of white snow, trees,
and sky may lose the red spot entirely, completely changing the desired effect.

The quantization process can also be described graphically, in terms of color spaces.
The range of colors in a picture can be seen as a subspace of the RGB cube, and thus the
first step in quantization involves finding the smallest “box” that contains all the colors ap-
pearing in the image. In the second step, the “box” can be partitioned into spaces, or in
our example, 256 spaces corresponding to the representable colors. A number of methods
for achieving this partitioning have been devised.

The uniform partitioning algorithm divides the subspace containing the existing colors
into blocks of equal size. This can be done by making slices through the initial box in
each of the red, green, and blue dimensions. If the quantization is perfectly uniform, the
slices in each dimension are equally spaced, but the size of a slice in one dimension does
not have to equal the size of a slice in another dimension. The slices must be made such that
they partition the color space into no more than 256 blocks. For example, if we are quan-
tizing to 256 colors, then we could have 16 segments in the red direction, 4 in the green di-
rection, and 4 in the blue direction, yielding blocks; or we could
have dimensions of , or any other combination that gives 256 blocks. We could
even have fewer than 256 if we don’t mind sacrificing some colors, for example using di-
mensions of .

Imagine the color space partitioned uniformly giving eight values of red, eight of green,
and four of blue. This is a reduction from 256 values for each red to only eight values. In
this partitioning, the red component would map to values between 0 and 7 as follows:

6 �  6 �  6

8 �  8 �  4
16 �  4 �  4 �  256

2b

2b

(R -  ri)
2 + (G - gi)

2 + (B - bi)
2

0 …  i 6  2bbigiri

ith
2b

TABLE 3.2 Uniform Partitioning for Indexed Color

Range of Reds in the Original Range of Red in the Original Index to Which They
Image (decimal values) Image (binary values) Map in the Color Table

0–31 00000000–00011111 0

32–63 00100000–00111111 1

64–95 01000000–01011111 2

96–127 01100000–01111111 3

128–159 10000000–10011111 4

160–191 10100000–10111111 5

192–223 11000000–11011111 6

224–255 11100000–11111111 7
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132 Chapter 3 Digital Image Processing

Essentially, all colors from the original file whose first three bits are 0 map to position 0
in the color table, all whose first three bits are 001 map to position 1, and so forth. Green
would map similarly, and blue would be mapped in a coarser-grained fashion to just four
values.

The disadvantage of uniform partitioning is that it does not account for the fact that the
equal-sized partitions of the color space may not be equally populated. There may be many
colors in one partition, and only a few in another. All the colors in a heavily populated par-
tition will be converted to a single color, and smooth transitions of color will be lost in the
image.

A combination of the popularity and the uniform partition algorithms can be
achieved as follows: Again assume that n is the bit depth of the original image, and b
will be the bit depth of the converted image. Imagine that you want to get a count of how
many times each of the colors appears in a picture. You could allocate an array of 
integers, read the image file, and increment position i in the array each time the corre-
sponding color is encountered. By this brute force method, if , you could need a

element array. That’s pretty large. Instead, you could allocate a 
element array, where . For example, k could be 12, giving a 
element array. Then, for each pixel in the image file, consider only the first bits 
in each of the color channels. The positions in the color table are incremented each time
a color is encountered, but on the basis of the first bits of each of the color channels
only. Then the most frequently appearing color-ranges from among the in 
the color frequency table are chosen for the final color table. As before, the minimum
mean squared distance is used to convert each original color to one of the colors in this
color table.

Consider how this would work in the case where , , and .

• For each pixel, consider only the first bits in each of the R, G, and B color
channels, for a total of 12 bits total. This is equivalent to taking groups of 4,096 neigh-
boring colors and making them all one “average” color.

• Run through the original image file and count how many of the pixels fall into each of
the 4,096 categories.

• Take the most frequently occurring of these categories and use them in the
final indexed color table for your image.

• Finally, to convert your image file based on this color table, take each of the original
pixels and map it to the closest of the colors in the color table based on minimum
mean squared distance.

The median-cut algorithm is superior to uniform partitioning in that it does a better bal-
ancing of the number of colors in a partition. The first step, as before, is to reduce the RGB
color space to the smallest block containing all the colors in the image. The algorithm pro-
ceeds by a stepwise partitioning where at each step some sub-block containing 
colors is divided in half along its longest dimension such that of the existing colors
from the image are in one half and are in the other. After this halving, the new sub-
blocks are placed on a queue, possibly to be divided again later, until there are finally 
sub-blocks. When the color space has been partitioned, a color in the center of each sub-
block can be chosen as representative of all colors in that sub-block.

The octree algorithm is similar to the median-cut algorithm in that it partitions the color
space with attention to color population. The algorithm is implemented by means of a tree
that has a depth of eight where each node can have up to eight children. This yields a maxi-
mum of leaf nodes. (Note that .) However, only leaf nodes are actually created,2b88 � 22488

2b
c/2

c/2
2n � c

2b � 256

k>3 � 4

k � 12b � 8n � 24

2k2b
k/3

k/3
212 = 4,096b 6  k 6  24

2k224 = 16,777,216
n � 24

2n2n
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000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Inserting first pixel into octree
where pixel’s RGB components are

R: 00100111
G: 11101000
B: 01111111

Figure 3.2 Building an octree, one pixel inserted
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each leaf node corresponding to a color in the reduced-bit depth image. We assume for this
discussion that and .

The octree algorithm has two major steps—determining the colors to use in the reduced-
bit depth image, and converting the original image to fewer colors on the basis of the cho-
sen color table.

b � 8n � 24
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134 Chapter 3 Digital Image Processing

Let’s consider creation of the octree first, which essentially gives us a color table. Ini-
tially, a root node is created in the octree with the possibility of up to eight children. For each
pixel in the image, the R, G, and B components are given in binary as 

, and . The algorithm processes each pixel by consid-
ering its bits from most significant to least significant, numbering these from 1 to m. The
numbering of the bits matches the level numbers of the tree, which is numbered from the
root beginning at 0. (Note that .) For each i, the bits at position i of the pixel being
processed through the tree are concatenated as one value, . These three bits together
can be taken as a value j. Then we create a child node of the current node.

For example, say that the pixel currently being inserted into the tree is

and . Then , which has the value 5. Starting at the root node of the tree,
we move to the root’s 5th child node. If no such child node exists, one is created. It is
recorded in this child node that the node has been “visited,” i.e., that a pixel has been en-
countered with this value for the most significant bit of the combined R, G, and B compo-
nents. The next most significant bits are then considered. They combine to form the deci-
mal value 7, so we move to child 7 of the current node, thus moving down to level 2, and
creating the child node if it does not already exist. The child node is marked as having been
visited. This continues down the tree to a leaf node, each leaf node corresponding to a 24-
bit color. The process repeats for each pixel in the original image file.

We have omitted some details in the description of how a pixel is recorded. Each time a
pixel is processed through the tree, there is the possibility that a new leaf node will be cre-
ated. However, we ultimately want only leaf nodes representing colors to be used in
the indexed color image. Thus, if processing a pixel results in the creation of a leaf node

, some nodes need to be combined. A reducible node—one that has at least two
children—must be found at the lowest possible level. If the reducible node has k children,
then after it is reduced there will be room for new leaf nodes in the tree. Reducing a
node indicates that, at this point, all the pixels that passed through the reduced node are
grouped as a single color. (The tree may grow again later from this node, however.)

As mentioned above, as pixels are processed in each step, the algorithm records at each
node in the tree how often the node has been visited, and by what kind of pixel. Say that
variables in each node are as follows:

numVisits /*the number of times the node has been visited*/
RTotal /*the sum of the R components of all the pixels that passed through this

node*/
GTotal /*the sum of the G components of all the pixels that passed through this

node*/
BTotal /*the sum of the B components of all the pixels that passed through this

node*/
isLeaf /*a Boolean indicating if this is a leaf node*/

Then every node in the tree in effect represents a color—the “average” of all the pixels in
the image in a certain R, G, and B range, as given by:

colorSubstitute = a RTotal

numVisits
b , a GTotal

numVisits
b ,a BTotal

numVisits
b

k - 1

2b � 1

2b2b

r1g1b1 = 1012i � 1

 B � 11100011
 G � 01010101
 R � 11000110

jth
rigibi

m � n>3

B = b1b2b3 Á bmG = g1g2g3 Á gm

R = r1r2r3 Á rm,
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worksheet

After the octree has been created, the original image file is processed a second time. The
octree is traversed in a manner reflecting the way it was originally created. For each pixel
in a file, going from the most significant to the least significant bits in the R, G, and B com-
ponents, , we move down the octree to the child node corresponding to a
grouping of the pixel’s most significant bits. The leaf node we arrive at by this means
contains the color representative for the pixel being processed. This node could represent
the pixel’s color in the original image, or it could be an average of pixels that have the same
bit values in their R, G, and B components up to the level of significance.

The octree method has the advantage of using the image’s original colors if possible,
and averaging similar colors where this is not possible. It is also efficient in its implemen-
tation, since the tree never grows beyond a depth of eight.

3.4 DITHERING
Dithering is a technique for simulating colors that are unavailable in a palette by using
available colors that are blended by the eye so that they look like the desired colors.
Dithering is helpful when you change an image from RGB mode to indexed color because
it makes it possible to reduce the bit depth of the image, and thus the file size, without
greatly changing the appearance of the original image.

In an image processing program, if you change an image from RGB mode to indexed
mode, you’ll probably have a choice of palette sizes and dithering methods. In eight-bit in-
dexed color, if your image is to be placed on the web you may choose to limit the palette to
the 216 web-safe colors. All web browsers use the same web-safe palette for eight-bit color,
and if you choose this palette you know how your picture will look to others, even those
whose browsers or monitors are limited to eight bits. For aesthetic reasons or for reasons
having to do with file size, you can also limit your image to a smaller bit depth and palette.
Whatever your choice of bit depth, you can choose to dither the image or not. If reducing
the bit depth of your image creates undesirable sharply delineated areas of solid color,
dithering is a good option.

Dithering algorithms are easy to understand if you consider first how dithering would be
done to simulate the look of a grayscale image using only pure black and pure white pix-
els. Let’s look at the three dithering methods that are commonly used in image processing
programs: noise, pattern, and error diffusion dithering.

First consider what would happen if you have a grayscale image that uses eight bits per
pixel and decide to reduce it to a black and white bitmap that uses one bit per pixel. A sen-
sible algorithm to accomplish this would change pixel values less than 128 to black and
values greater than or equal to 128 to white. This is called thresholding.

As you can see from Figure 3.3, thesholding results in large patches of black and white.
Noise dithering (also called random dithering) eliminates the patchiness and high
black/white contrast by adding high frequency noise—speckles of black and white that,
when combined by the eye, look like shades of gray. The algorithm for a grayscale image
proceeds by choosing a random number between 0 and for each pixel, where b is the
bit depth of the indexed image. If the pixel’s color value is less than the random number,
the pixel is made black; if it’s greater, it is white. (Otherwise, choose a new random num-
ber.) This algorithm has been applied to the picture in Figure 3.4. It is actually too noisy,
but the effect can be softened by various means—like not inserting noise with every pixel
(using a random number again, to determine when noise will be inserted).

2b-1

ith

ith
1 …  i …  m

programming
exercise

Supplements on
dithering:

interactive tutorial

M03_BURG5802_01_SE_C03.QXD  7/2/08  12:10 PM  Page 135

Dithering.htm
DitheringWorksheet.pdf
Dithering.pdf


136 Chapter 3 Digital Image Processing

Figure 3.4 Noise (i.e., random) dithering (very noisy)

Pattern dithering (also called ordered dithering or the Bayer method) uses a regular pat-
tern of dots to simulate colors. An array of values between 1 and is applied to
each block of pixels in the image file. We call this array a mask. The numbers in the
mask will determine the appearance of the pattern in the dithered image file. Say that they
are as shown below:

1 7 4
5 8 3
6 2 9

For each block of pixels in the original image, each pixel value p is scaled to a value
between 0 and . In this case, we can divide all the pixels by 25.6 and drop the remain-

der. Assuming that the values initially are between 0 and 255, this will result in normalized
values between 0 and 9. Then the normalized pixel value is compared to the value in the
corresponding position in the mask. If is less than that value, the pixel is given the value
0, or black; otherwise, it is white. Pattern dithering is easy and fast, but it can result in a

p¿

m2p¿
m � m

m � m
m2m � m

Figure 3.3 Thresholding
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3.4 Dithering 137

Figure 3.5 Pattern dithering

crosshatched effect (Figure 3.5). There are many variations of this basic algorithm, apply-
ing masks of different sizes and types.

Error diffusion dithering (also called the Floyd–Steinberg algorithm) is a method that
disperses the error, or difference between a pixel’s original value and the color (or
grayscale) value available. In sketch, here’s how it works. For each pixel, the difference be-
tween the original color and the color available is calculated. Then this error is divided up
and distributed to neighboring pixels that have not yet been visited. After all pixels have
been visited, the color used for each pixel is the color in the reduced palette closest to the
pixel’s new value. Details of the algorithm include a determination of the relative fraction
of the error distributed to neighboring pixels, the method for choosing the closest available
color, and the order in which pixels are processed. Adjustments can be made to reduce
color bleeding (the bleeding of one color into another in the direction in which the error is
dispersed).

Consider this example implementation for grayscale images. For each pixel p, the error
can be distributed in a manner reflected in the mask below.

p 7
3 5 1

Imagine laying the mask on top of the image, lining it up over the top left pixel area.
Each number in the mask pertains to the pixel that it “covers.” Call the pixels under the
mask where r is the row and s is the column. This gives . Let e be the
error that would be introduced in changing p if the threshold algorithm were applied, de-
fined as follows: If , then (because thresholding would round p down to 0).
If , then (because thresholding would round p up to 255, which
would become a 1 in a black and white image). Now notice that the numbers in the mask
add up to 16. The mask symbolizes that if thresholding would make p greater, then, to com-
pensate, error diffusion should subtract of the error from the pixel to the right of p;
subtract of the error from the pixel below p; subtract from the pixel below and to
the left; and subtract from the pixel below and to the right. If thresholding would1/16

3/55/16
7/16

e = p - 255p Ú  128
e � pp 6  128

p = f(0, 1)f(r, s)

2 � 3
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Figure 3.6 Error diffusion dithering

make p smaller, the corresponding values are added to the neighboring pixels. That is, as-
signments are made as follows:

The definition of e makes it negative when thresholding would increase p. The equations
are assignment statements, denoting that the original pixel values are replaced. Thus, when
the mask is moved to the right by one pixel, the next step will operate on a pixel that has
possibly been changed in a previous step. Pixels can be processed either left to right across
each row, or in an alternating motion from left to right and right to left, weaving back and
forth. Note that if the error diffusion weaves back and forth, the order of the error multipli-
ers must be flipped accordingly.

After the error has been distributed over the whole image, the pixels are processed a sec-
ond time. This time for each pixel, if the pixel value is less than 128, it is changed to a 0 in
the dithered image. Otherwise it is changed to a 1. The results are shown in Figure 3.6.

 f(1, 2) = f(1, 2) + (1>16)e

 f(1, 1) = f(1, 1) + (5>16)e

 f(1, 0) = f(1, 0) + (3>16)e

 f(0, 2) = f(0, 2) + (7>16)e

All the dithered images in this section were created “from scratch” using a simple program,
one that you could write yourself. (This is why you see pattern edges in the pattern dithering:
the edges were handled roughly.) An interesting exercise is to try to write these programs
and then compare your results to the dithering done by a professional image processing pro-
gram that offers the three dithering options we just examined. (See the programming exercise
in the learning supplements, which gives more detail to the algorithms.)

3.5 CHANNELS, LAYERS, AND MASKS
Digital image processing tools make it easier for you to edit images by allowing you to
break them into parts that can be treated separately. Channels are one such breakdown. A
channel is a collection of image data, with separate channels for different color components
and opacity information. If you’re working in RGB mode, there’s a channel for each of the

M03_BURG5802_01_SE_C03.QXD  7/2/08  12:10 PM  Page 138



3.5 Channels, Layers, and Masks 139

Figure 3.7 R, G, B, and alpha channel (from Photoshop)

Figure 3.8 Layers (from Photoshop)

red, green, and blue color components. All channels have the same pixel dimensions, those
of the overall image. You can edit each channel separately, adjusting its contrast, bright-
ness, saturation, shadows and highlights, and so forth. An additional channel called an
alpha channel can be added to an image to store the opacity level for each pixel. Figure 3.7
shows the Channels panel from an image editing program, from which you can select a
channel for editing. This image includes an alpha channel, at the bottom. The white part of
the alpha channel specifies which pixels in the overall image are opaque, and the black part
specifies which are transparent.

A layer in image editing is just what the name implies. You can imagine layers to be like
sheets of transparent acetate that are laid one on top of another. In areas where there is noth-
ing on a layer, the layer beneath is visible. How can it happen that some areas of a layer
have nothing on them? This can happen when you cut something out of one image and
paste it into a layer of a second image, as shown in Figure 3.8. The rose was cut out of an-
other image and placed into the image shown. The area around the flower on the layer
named Rose is transparent, represented by the gray and white checkered pattern. The
Leaves layer underneath shows through the transparent areas of the Rose layer. Notice that
each layer has an opacity setting, shown in the Opacity box on the top right of the panel.
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R

G

B

Alpha
channel

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.4 1.0 1.0 1.0 1.0 0.4 0.5
0.5 0.4 1.0 1.0 1.0 1.0 0.4 0.5
0.5 0.4 1.0 1.0 1.0 1.0 0.4 0.5
0.5 0.4 1.0 1.0 1.0 1.0 0.4 0.5
0.5 0.4 1.0 1.0 1.0 1.0 0.4 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

The alpha channel is an additional
channel, giving the opacity level of
the RGB color.

Figure 3.9 Alpha channel

The Leaves layer’s opacity is set to 50%, so the solid color background shows through,
softening the overall effect and making the rose stand out more.

If you want to specify the opacity level of a layer pixel-by-pixel, you can do this with
either an alpha channel or a layer mask, depending on how your image editing software
works. An alpha channel is a type of mask in that it can block the visibility of pixels, either
fully or partially. The alpha channel has the same pixel dimensions as the overall image.
Assuming that the alpha channel is represented by eight bits per pixel, then the closer an
alpha channel value is to 255, the more opaque the corresponding pixel in the image. An
alpha channel value (alpha value, for short) of 0 corresponds to a fully transparent pixel.
(This convention can be reversed in some application programs such that 0 represents fully
opaque, so be sure to check.) The alpha values can be normalized to fall between 0 and 1,
as shown in Figure 3.9.

KEY EQUATION

Given is an RGB image with two layers, foreground and background, the
background being 100% opaque. Let a foreground pixel be given by a
background pixel be given by . Let the alpha value for the foreground,
representing the opacity level, be where . Then for each foreground
pixel and corresponding background pixel at the same location in the image, the re-
sulting composite pixel color created by alpha blending is defined

 cb = affb + (1 - af)bb

 cg = affg + (1 - af)bg

 cr = affr + (1 - af)br

C = (cr, cg, cb)
BF

0 … af … 1af

B = (br, bg, bb)
F = (fr, fg, fb)

Alpha blending is a mathematical procedure for putting together multiple images or
layers with varying levels of opacity. In the simplest case, you have a foreground pixel
with a certain opacity level and an opaque background. In that case, alpha blending works
as follows:
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Pink

Green

Pink 
over
green

Figure 3.10 Compositing, pink foreground that is 60% opaque 
with 100% opaque green background

Henceforth, we’ll condense operations such as this to the form ,
which is meant to imply that the operations are done channel-by-channel.

Let’s try an example. If the foreground pixel is (248, 98, 218) with 60% opacity and the
background pixel is (130, 152, 74), the result will be (201, 120, 160), as computed below
and pictured in Figure 3.10.

In the figure, the area where the blocks overlap is the area of the composite color.

 0.6 * 218 + 0.4 * 74 = 160

 0.6 * 98 + 0.4 * 152 = 120

 0.6 * 248 + 0.4 * 130 = 201

C = afF + (1 -  af)B

Alpha blending can get more complicated when there are multiple layers, each with its
own opacity level. We’ll look at this in more detail in Chapter 7, as it applied to the com-
positing processes used in digital video.

Image processing programs do the mathematics of alpha blending for you, allowing you
to create alpha channels or define opacity levels in a number of different ways. One simple
method is to add an alpha channel to an image and paint on it to indicate which parts of the
image you want to be transparent. First you choose a grayscale value between 0 and 255 for
your paint color. Then you apply that color to the alpha channel by painting with a brush,
creating filled geometric shapes, applying gradients, or using any other methods for apply-
ing color to pixels. The closer the color on the alpha channel is to black, the more transpar-
ent the corresponding pixels will be in the image.

A second way to make an alpha channel is to select the part of an image that you want
to be visible in an image and then convert the selection to an alpha channel. This is the way
the alpha channel was created in Figure 3.7. The blue background behind the Demon Dea-
con puppet was selected with a magic wand tool, which selects similar colors within a
given tolerance. The selection was then inverted so that the puppet was selected and the
background left out. Then the selection was saved as an alpha channel.

The image shown in Figure 3.7 has an alpha channel that effectively makes the back-
ground invisible, but there’s no layer underneath to show through. In Chapter 7, we’ll show
you how you can import such an image into a video editing program, lay it over a video
track, and allow the images on the video track to show through.

If you want to extract an object from its background and put another background behind
it, all within the same image, you can do this with a layer mask. A layer mask is an alpha
channel applied to a layer in a multiple-layer image (as opposed to an alpha channel
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Figure 3.11 Alpha channel (as a layer mask) on an individual layer

Figure 3.12 GIF file with one color in color table representing transparency

applied to the image as a whole). The concept is still the same—i.e., a channel of pixel data
indicates the opacity level of each pixel in a layer. We created another picture of the Dea-
con walking across campus, this time composing the entire image in an image processing
program. This was done by putting the Deacon on the top layer, applying a layer mask to
that layer, eliminating the background from that layer, and putting a new background on the
bottom layer. In Figure 3.11, you can see a layer mask in the Layers panel and a correspon-
ding alpha channel in the Channels panel.

You may want to note that you can have transparent or partially transparent pixels in an
image without explicitly having an alpha channel. You’ve actually seen this already, in the
example in Figure 3.8. In this image, part of the rose was selected from its background and
the background was erased. Also, the layers themselves have an opacity setting. Thus you
see that opacity information can be part of an image file without your having explicit ac-
cess to the alpha channel. An advantage to explicitly creating an alpha channel is that you
don’t lose any pixel information by making pixels transparent. The color values are still
there, and the alpha channel can easily be edited.

With GIF files, which are in indexed color mode, you can save transparency information
without an alpha channel. The transparency information is saved as a pixel color in the color
table. You can see this in Figure 3.12. This image, which initially was in RGB mode, was
created by first converting the background to a layer, selecting the background, deleting the
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3.6 Blending Modes 143

background, and saving as GIF. You can see in the color table that there is one color reserved
to represent transparent pixels (in the lower right corner of the table). Whether or not this
transparency information is recognized depends on the application program into which you
import the GIF file.

3.6 BLENDING MODES
In addition to opacity settings, layers have blending modes associated with them. In the fig-
ures shown so far in this section, the blending modes have been set to Normal. (Blending
modes can be applied to paint tools as well as to layers, indicating how the painted pixels
should combine with already-painted pixels.) The Blending Mode setting for a layer is to
the left of the Opacity setting on the Layers panel in Figure 3.11.

Blending modes create a variety of effects in making a composite of a foreground and
background image. For example, the darken mode replaces a background pixel with the fore-
ground pixel only if the foreground pixel is darker. The lighten mode does an analogous
lightening process. The multiply mode, as the name implies, multiplies the foreground and
background pixel values. Since pixel values are normalized to fall between 0 and 1, multiply
always darkens an image, unless the background is pure white. The blending operations are
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TABLE 3.3 Blending Modes

Blending Mode Equation

normal

multiply

divide

screen

overlay

dodge

burn

hard light If then 
If then 

soft light

grain extract

grain merge

difference

addition

subtraction

darken only

lighten only C =  max(B, F )

C =  min(B, F )

C = B - F
C = B + F
C = ƒ B - F ƒ
C = B + F - 0.5

C = B - F + 0.5

C = 2(F * B ) + B 2 - 2(F * B 2)

C = 2(F * B)F … 0.5
C = 1 - 2(1 - B )(1 - F )F 7 0.5

C = 1 - ± ± 1 - B

F +
1

255

≤ a 256
255
b ≤

C = £ B
256
255

 - F
≥ a 256

255
b

C = B(B + 2F (1 - B ))

C = 1 - ((1 - F )(1 - B ))

C = £ B

F +
1

255

≥ a 256
255
b

C = F * B
C = F
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done channel-by-channel. Table 3.3 lists the equations for a number of common blending
modes. The pixel values in these equations are assumed to be scaled to a range of 0 to 1.

Given is an RGB image with two layers, foreground and background, with
100% opacity on each layer. Let a foreground pixel be given by and a
background pixel be defined by where .
Then for each foreground pixel and corresponding background pixel at the same lo-
cation in the image, the resulting composite pixel color is defined for
each blending mode in Table 3.3. The equations are applied channel-by-channel, and re-
sults are clipped to a range of 0 to 1.

C = (cr, cg, cb)
BF

0 … fr, fg, fb, br, bg, bb … 1B = (br, bg, bb)
F = (fr, fg, fb)

The equations in the table were adapted from a GIMP website. Newer versions of GIMP
and other image processing programs may use different equations.

Dissolve, hue, saturation, value are sometimes listed as blending modes as well, al-
though they are not implemented by single channel equations. Dissolve mode operates by
randomly dithering the alpha channel of the foreground to black and white. Hue takes the
hue of the foreground (where the hue is defined) and the saturation and value of the back-
ground. Saturation and value modes operate analogously. Color blending modeworks as a
combination of hue and saturation blending modes.

The blending mode equations given in Table 3.3 do not take into account the alpha chan-
nels of the foreground and background layers. How blending and alpha channels are com-
bined is implementation-dependent in different application programs. Generally, the fore-
ground’s alpha affects only the strength of the blend, while the background’s alpha sets the
opacity level.

3.7 PIXEL POINT PROCESSING

3.7.1 Histograms
When you work with bitmap images, you generally have something you want to communi-
cate or an effect you want to create. It may be that you simply want your image to be as
clear and detailed as possible. If you’re working on the image as art, you might want to pro-
voke a certain mood or alter colors and shading that affect the aesthetics of the image. If
you’re using the image to sell something, you may want to change the focus or emphasis.
Whatever your goals, you will find yourself doing operations like adjusting the contrast or
brightness, sharpening lines, modifying colors, or smoothing edges. Each of these opera-
tions is an example of an image transform—a process of changing the color or grayscale
values of image pixels. The following discussion divides image transforms into two types:
pixel point processing and spatial filtering. In pixel point processing, a pixel value is
changed based only on its original value, without reference to surrounding pixels. Spatial
filtering, on the other hand, changes a pixel’s value based on the values of neighboring pix-
els. (You’ve already seen an example of spatial filtering: dithering.) This section looks at
pixel point processing, and in the next section we’ll move on to more examples of spatial
filtering. 
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3.7 Pixel Point Processing 145

One of the most useful tools for pixel point processing is the histogram. A histogram is
a discrete function that describes frequency distribution; that is, it maps a range of discrete
values to the number of instances of each value in a group of numbers. More precisely,

KEY EQUATION

Let be the number of instances of value i in the set of numbers. Let min be
the minimum allowable value of i, and let max be the maximum. Then the histogram
function is defined as

for .min …  i …  maxh(i) = vi

vi

A simple histogram is shown in Figure 3.13 for a group of 32 students identified by class
(1 for freshman, 2 for sophomore, 3 for junior, and 4 for senior). You can see that a his-
togram is graphed as vertical lines (or sometimes vertical bars are used). There are ten
freshmen, six sophomores, five juniors, and 11 seniors.

1 2 3 4

8

10

6

4

2

Figure 3.13 A histogram

An image histogram maps pixel values to the number of instances of each value in the
image. A grayscale image and its corresponding histogram are shown in Figure 3.14.
Grayscale levels extend from 0 to 255 across the horizontal axis. Each of these values has a
vertical line above it indicating the number of pixels in the image that have this value. In
practice, image histograms are usually normalized by dividing by the maximum number of
instances of a pixel value within the range of values in the image. This is illustrated in the
figure below. The value that occurs most frequently in the image is the statistical mode. In
this example, there are two modes, 141 and 143, occurring with the same frequency. The
tallest vertical line is at this point, and it goes to the top of the histogram. Normalizing his-
tograms in this way makes it easier to compare the histograms of two images that don’t have
the same total number of pixels, since all normalized histograms have a height of one unit.

One of the most important things to observe from a histogram is the extent to which the
pixel values cover the possible range. Consider the example in Figure 3.14. The darkest
pixel is 58, and the lightest is 210. In other words, the image does not have a wide dynamic
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Figure 3.14 Low contrast grayscale image and its histogram (from Photoshop and GIMP)

range. Consequently, it doesn’t have a lot of contrast. All the values are crowded together
in the center of the histogram. This generally isn’t what you want in an image. Contrast
makes the image look sharper and more interesting.

Some histograms, like the one in Figure 3.14, give statistical information about the dis-
tribution of pixel values, including the mean, median, and the standard deviation. Assume
that you have n samples in a data set. For our purposes, a sample is a pixel value.

A median is a value x such that at most half of the values in the sample population are
less than x and at most half are greater. If the number of sample values is even, the median
may not be unique. For example, with [1, 3, 5, 7], any value between 3 and 5 inclusive is a
median. Commonly, however, the mean of the two values in the middle is considered the
median.

KEY EQUATION

The mean, or average, is defined as:

x =
1

na
n

i=1
xi

x

KEY EQUATION

The standard deviation measures how much the samples vary from the aver-
age. It is defined as

where is the sample in a population of n samples.ithxi

s = A
1

na
n

i=1
1xi - x22
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A large standard deviation implies that most of the pixel values are relatively far from
the average, so the values are pretty well spread out over the possible range. Generally,
this means that a higher standard deviation is indicative of more contrast in the image.
However, you have to be careful how you interpret this. If you had only the standard de-
viation of an image file’s histogram and didn’t see the image, you might be fooled. The
histogram gives you an overview of the pixel values that exist in an image, but it doesn’t
tell you anything about where they are. Think about this: What type of grayscale image
would give you the largest standard deviation? One that has an equal number of purely
black and white pixels in it, right? The only pixel values in such an image would be at both
extremes: 0 and 255. But both of the images in Figure 3.15 fit this description. The one on
the left is perceived as having more contrast because the black and white pixels are spa-
tially separated. The image on the left has alternating black and white pixels, so it looks
like a shade of gray.

Figure 3.15 Two figures with the same
histogram and standard deviation

Histograms are available in scanner software, digital cameras, and image processing
programs. You should check your hardware and software to see what type of histograms
they offer and how they are used. In scanner software or digital cameras, a histogram can
help you adjust lighting or make settings when you capture an image so that you’ll get the
maximum amount of appropriate pixel data. With a scanner, you can prescan a digital
image and then view the histogram to see what adjustments are necessary before the final
scan. With a digital camera, you can take a picture and then view a histogram to decide if
you need to take the picture again with different settings or lighting conditions. If most of
the pixel values are grouped in the center of the histogram, you may want to adjust your
lighting to increase contrast. If most of the values are to the right of center, the image is
probably too light. If most are to the left, it’s probably too dark.

Sometimes a histogram is displayed along with the image just photographed or pre-
scanned, and the areas that are clipped in the image are outlined for you in the image.
Clipped values are those that fall outside the sensitivity range of the camera or scanner. If
an area is too dark, all the pixels there register as black (0), and if the area is too light they
become white (255 in grayscale). Some scanners allow you to increase the analog gain—
the luminance of the scanner’s light source—so that enough light can pass through the
source image’s darker tones, allowing them to be measured.

Changing the lighting and adjusting analog gain are examples of ways to use a his-
togram to capture good image data from the outset. Gathering the best data possible from
the outset is always the best plan. But even with the best planning, you’ll still have many
situations where you want to alter the captured image in some way. Histograms are very
useful in image processing programs for situations like these.

Before showing you how to adjust contrast or brightness with a histogram, we need to
clarify how different color modes are handled. In RGB mode, each pixel has three color
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Figure 3.16 A histogram that can
be manipulated to adjust brightness
and contrast (from Photoshop)

channels where the values in each channel range from 0 to 255. (Larger bit depths are pos-
sible, but eight bits per channel is common.) A separate histogram can be created for each
color channel. The R histogram, for example, shows how many pixels have 0 for their R
component, how many have 1 for their R component, and so forth up to 255. A composite
RGB histogram can also be constructed, which for shows the total number of
pixels that have j as their R component plus the pixels that have j as their G component plus
the pixels that have j as their B component.

A disadvantage of the composite RGB histogram is that it doesn’t correspond directly to
the perceived brightness of an image. Among the three color channels, the human eye is
most sensitive to green and least sensitive to blue. This fact is reflected in the way that RGB
color is transformed to grayscale. Recall from Chapter 2 that a three-byte RGB color can
be converted to a one-byte grayscale pixel with value L using

Some scanners or image processing programs give you access to a luminance histogram
(also called a luminosity histogram) corresponding to a color image. A luminance his-
togram converts the RGB values into luminance, as shown above, and then creates the his-
togram from these values.

Figure 3.16 shows a histogram that can be manipulated to alter the brightness or contrast
of a grayscale image. Notice the triangles on either side of the histogram, marked with the
arrows. These triangles can be moved left or right and correspond to values labeled Input
Levels. Say that you move the slider on the left to 55 and the one on the right to 186. As-
suming that you don’t move the middle slider, this maps the input pixel values to output
values such that the pixel that was originally 55 becomes 0, the pixel that was previously
186 becomes 255, and everything in between is spread out proportionately. This increases
the contrast and allows for more differences between the grayscale values in the image. If
you apply this transform and then look at the histogram again, the new histogram looks like
Figure 3.17. (Actually, you can open the Histogram window and watch the histogram
change there as you move the sliders in the Levels window.) Notice that now the whole
range of possible grayscale values is being used.

L � 0.30R � 0.59G � 0.11B

0 … j … 255

Figure 3.17 Histogram of image in
Figure 3.16 after contrast adjust-
ment (from Photoshop)

The middle value in the Input Levels input fields is called the gamma level and relates to the
midtones of the image. You can manipulate this value by moving the center triangle-shaped
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Supplements on
curves:

interactive tutorial

slider on the histogram. If you move the middle slider and leave the left and right sliders where
they are, you can manipulate the midtones without affecting the lightest and darkest values—
the highlights and shadows—in the image. If you do this, you’ll see that the gamma value
ranges from 0.10 to 9.99. In the next section, we’ll look at the mathematics to see why this
range of gamma values makes sense.

3.7.2 Transform Functions and “Curves”
Image processing programs sometimes give you another mathematical/graphical view of
image data from which you can perform pixel point processing. In programs like Photoshop
and GIMP, the Curves feature allows you to think of the changes you make to pixel values as
a transform function. Let’s look at pixel point processing from this point of view now. 

We define a transform as a function that changes pixel values. Expressed as a function
in one variable, it is defined as

is the pixel value at that position (x, y) in the original image, T is the transforma-
tion function, and g( x, y) is the transformed pixel value. Let’s abbreviate f( x, y) as and
g(x, y) as This gives us

Transforms can be applied to pixel values in a variety of color modes. If the pixels are
grayscale, then and are values between 0 and 255. If the color mode is RGB or some
other three-component model, f( p) implies three components, and the transform may
be applied either to each of the components separately or to the three as a composite. For
simplicity, let’s look at transforms as they apply to grayscale images first.

An easy way to understand a transform function is to look at its graph. A graph of trans-
form function T for a grayscale image has on the horizontal axis and on the vertical
axis, with the values on both axes going from 0 to 255—that is, from black to white.

Consider the graphs in Figure 3.18. In each case, what would the corresponding trans-
form do to a digital image?

• The transform in Figure 3.18a doesn’t change the pixel values. The output equals the
input.

• The transform in Figure 3.18b lightens all the pixels in the image by a constant
amount.

• The transform in Figure 3.18c darkens all the pixels in the image by a constant
amount.

• The transform in Figure 3.18d inverts the image, reversing dark pixels for light ones.
• The transform in Figure 3.18e is a threshold function, which makes all the pixels

either black or white. A pixel with a value below 128 becomes black, and all the rest
become white.

• The transform in Figure 3.18f increases contrast. Darks become darker and lights be-
come lighter.

Image processing programs have features to automatically adjust the contrast or color
levels for you. Many also give you greater control by allowing you to manipulate a graph of
the transform function. Figure 3.19 shows the Curves dialog box from Photoshop and GIMP,
where you can select points and drag them to adjust contrast or brightness. This makes it

p2p1

p2p1

p2 = T(p1)

p2.
p1

f(x, y)

g(x, y) = T( f(x, y))

worksheet
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Initially, the “curve” is a straight line.
You can select points and drag to reshape
the function, as shown on the right.

Figure 3.19 Adjusting the curve of the contrast function (from Photoshop and GIMP)
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2550
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(a)
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(b)
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(d)
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(f)

p1

p2

Figure 3.18 Curves for adjusting contrast
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possible to create functions like the ones shown in Figure 3.18. In Figure 3.20, we’ve applied
the functions shown in Figure 3.18 so you can see for yourself what effect they have.

The adjustment we made in contrast using the histogram could be done with a graphical
view of the transform function as well. Say that you want to adjust the image in Figure 3.16
in a way that would be equivalent to moving the histogram’s left slider to 55 and its right
slider to 186, as described in Figure 3.17.

Moving the histogram slider on the left from 0 to 55 and on the right from 255 to 186
is equivalent to the transform function pictured in Figure 3.21. If you start with two

(a) Original image (b) Lighten (c) Darken

(d) Invert (e) Threshold (f) Increase contrast
Figure 3.20 Adjusting contrast and brightness with curves function

Figure 3.21 Curve to accomplish the same contrast adjust-
ment as done with the histogram (from Photoshop)
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Figure 3.22 Graphs for and g = 0.5g = 2

identical images, perform the histogram adjustment on one, perform the curves adjust-
ment on the other, and then look at the new histogram of each, you’ll see that you end
up with identical histograms and identical images. Both histograms will look like the
one in Figure 3.17.

Notice that the transform function we applied to the midtones is linear. When you move
the Input Level sliders on the left and right of the histogram but don’t move the middle
slider, the grayscale values in between are adjusted by a linear function. The histogram’s
middle slider corresponds to midtones. When the histogram is adjusted, grayscale values
are spread out linearly on either side of this value.

A nonlinear function like the S-curve in Figure 3.19 usually does a smoother job of ad-
justing the contrast. You can create a smooth S-curve like this by clicking on points in the
graph and dragging them to new locations. Equivalently, you can change the gamma value
in the histogram. We promised earlier to look at the math of the gamma value, and we can
do it now with reference to the graph of the transform function.

KEY EQUATION

The gamma value is an exponent that defines a nonlinear relationship between
the input level and the output level for a pixel transform function. In particular,

Equation 3.1

p1 = p2
g

 where p1 H 30 14
p2p1

g

Equation 3.1 may seem a little strange because the input level is on the left-hand side
of the equation; it seems more natural to think of as a function of . We could rewrite
the equation to express as the gammath root of , but it amounts to the same thing.
We give the equation in the form above because it matches the way Photoshop handles the
gamma values in its Levels features, as we’ll show below.

Think about what the graph of would look like for various values of gamma,
with defining the horizontal axis and defining the vertical. The graph on the left is
for for (which is the same as for ) Photoshop’s his-
togram view allows you to use gamma values between 0.1 and 9.99. The graph on the right in
Figure 3.22 shows a gamma value of 0.5 as used by Photoshop. (It’s the graph for p1 = p2

0.5

p2 = 1p1.0 … p1 … 1p1 = p2
2

p2p1

p1 = p2
g

p1p2

p1p2

p1
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for , which is .) If you compare the graph to the line, you
see that this gamma value causes all values to get darker with the exception of 0 and 1. The
values in the middle are changed more than those at the end. In general, gamma values less
than 1 darken an image while values greater than 1 lighten it.

Changing the gamma value in the histogram view of Figure 3.16 is equivalent to
pulling on a point in the graph of the transform function, represented in the Curves view
of Figure 3.19. As you pull a chosen point, the graph is stretched as smoothly as possi-
ble to accommodate the change, as if you’re pulling on an elastic band. The values of
lightest and darkest pixels are anchored where they are, but the midtones are lightened or
darkened.

Adjustments such as this can be done on color images as well, but the operations are
more complicated. If you’re working in RGB color, you can adjust the curve function for
the full RGB color values, or you can adjust the curve for each color channel separately.
One thing that makes it more difficult to work with color than with grayscale, however, is
that RGB is not a luminance/chrominance model. For the three color components, equal
changes of values do not create equal changes in luminosity or perceived brightness or con-
trast of the image. The green component contributes the most to luminosity, red the second
most, and blue the least. Thus, linear changes to the RGB color levels do not produce lin-
ear changes in brightness. Also, the three color components combine in a nonlinear way to
create the colors we perceive. In any case, it is possible to work with the color channel
curves and visually adjust the colors by moving the graphs. The important thing to under-
stand when you are adjusting a single color channel is that you are changing only that chan-
nel’s contribution to each pixel in the image.

3.8 SPATIAL FILTERING

3.8.1 Convolutions
A filter is an operation performed on digital image data to sharpen, smooth, or enhance
some feature, or in some other way modify the image. A distinction can be made between
filtering in the spatial versus the frequency domain. Filtering in the frequency domain is
performed on image data that is represented in terms of its frequency components. Filtering
in the spatial domain is performed on image data in the form of the pixel’s color values.
We’ll look at the latter type of filtering in this section.

Spatial filtering is done by a mathematical operation called convolution, where each
output pixel is computed as a weighted sum of neighboring input pixels. Consider a
grayscale image as a matrix of grayscale values. (Generalizing to three color channels
is straightforward.) Convolution is based on a matrix of coefficients called a
convolution mask (Figure 3.23). The mask is also sometimes called a filter. (We will use
these terms interchangeably.) The mask dimensions are less than or equal to the dimen-
sions of the image. Let’s call the convolution mask c and the image f. Assume the image
is of dimensions and the mask is You can picture the mask being placed
over a block of pixels in an image, starting in the upper left corner. (You may notice that
the filter numbering is “flipped” with regard to the image. This is by convention.) The
pixel that is to receive a new grayscale value lies at the center of the mask, which
implies that the dimensions of the mask must be odd. Assume that pixel f (x, y) is the
one to receive the new value.

m * n.M � N

p2 = p1p2 = p1
20 … p1 … 1

Supplements on
convolution:

interactive tutorial

worksheet
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Image to be
convolved

Convolution mask

c(1,1) c(1,0) c(1,–1)

c(0,1) c(0,0) c(0,–1)

c(–1,1) c(–1,0) c(–1,–1)

f(x–1,
y–1)

f(x–1,y)
f(x–1,
y+1)

f(x,y–1) f(x,y) f(x,y+1)

f(x+1,
y–1)

f(x+1,y)
f(x+1,
y+1)

1. Apply convolution mask to upper left corner of image.
2. Move mask to the right one pixel and apply again.
3. Continue applying mask to all pixels, moving left to
 right and top to bottom across image.
Figure 3.23 Convolution

KEY EQUATION

Let be an image and be an mask. Then the
equation for a linear convolution is

where and . Assume m and n are odd. This equation is
applied to each pixel of an image, for and .
(If , , , or , then is undefined.
These are edge cases, discussed below.)

Equation 3.2

f(x, y)y - w Ú Ny - w 6 0x - v Ú Mx - v 6 0
0 … y … N - 10 … x … M - 1f(x, y)

j = (n - 1)>2i = (m - 1)>2
f(x, y) = a

i

v= -i
 a

j

w= -j
c(v, w)  f(x - v, y - w)

m * nc(v, w)M * Nf(x, y)

We have written the convolution equation such that it replaces values in the original
image. If you do this, then the new values will be used in the convolution of neighboring
pixels. Sometimes this is what you want, and sometimes it isn’t, depending on the purpose
of the convolution. You should note that sometimes you want to create an entirely new
image, and write the new values there so that they aren’t used in later computations.

You may wonder what happens at the edges of the image. If we place the mask over the
image such that the upper left pixel is the one to receive a new value, then part of the mask
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1/9 1/9 1/9
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1/9 1/9 1/9

202 232 222 222 221 221

202 202 214 200 199 202

202 199 193 199 180 188

202 227 201 193 185 178

200 196 202 189 180 173

201 190 188 182 181 174

1. Assume that there are zero-valued pixels around
 the edges. These would be under the portion of
 the mask shaded in gray;
 or
2. Replicate the values from the edges,
 as shown;
 or
3. Use only the portion of the mask covering 
 the image and change the weights
 appropriately for that step;
 or
4. Don’t do convolution on the pixels at the edges.

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

202 232

202 202

202

202

202 202 232

Four ways to convolve pixels at the edge of an image:

Figure 3.24 Handling edges in convolution

is hanging off the edge of the image. Different ways to handle the edge pixels are summa-
rized in Figure 3.24.

Filters are sometimes used for smoothing or blurring an image. This is done by means
of an averaging convolution mask like the one shown in Figure 3.25. There are a number of
situations in which blurring is useful. Blurring can be used as a preprocessing step to “pull
objects together” so that the main objects in an image can then be detected and extracted.
It can be helpful in removing image noise, which is manifested as unwanted speckles,
which on a grayscale image can look like sprinkles of salt and pepper. It can soften jagged
edges or remove moiré patterns in an undersampled image. It can smooth over the blocki-
ness that can be caused by JPEG compression done at a high compression rate. You also
might want to smooth an image for aesthetic reasons. Smoothing convolutions are some-
times referred to as low-pass filters because their effect is to remove high-frequency com-
ponents of an image.

The mask shown in Figure 3.25 takes an average of the pixels in a neighborhood.
An alternative for smoothing is to use a Gaussian blur, where the coefficients in the convolu-
tion mask get smaller as you move away from the center of the mask. It is called a Gaussian
blur because the mask values in both the horizontal and vertical directions vary in the shape

3 � 3
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Figure 3.25 Convolution for averaging pixels in a neighborhood3 � 3

of a Gaussian bell curve. These values result in a weighted average of neighboring pixels. In
a pure average, all the weights are the same, and they sum to 1. In a weighted average, the
coefficients sum to 1, but they are not all the same. For a Gaussian blur, the coefficients closer
to the center have more weight than those farther away. A mask for a Gaussian blur is
shown in Figure 3.26. In practice, larger masks are often used for better effect.

3 * 3

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

202 232 222 222 221 221

202 202 212 200 199 202

202 222 192 199 180 188

202 227 201 193 185 178

200 196 202 189 180 173

201 190 188 182 181 174

Image to be
convolved

Convolution mask

Move the convolution mask over an area of
pixels in the original image.

This mask will compute an average of the pixels in
the neighborhood. The value of the center pixel will become

1/9*202+1/9*232+1/9*222+1/9*202+1/9*202+
1/9*214+1/9*202+1/9*199+1/9*193

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

202 232 222 222 221 221

202 202 214 200 199 202

202 199 193 199 180 188

202 227 201 193 185 178

200 196 202 189 180 173

201 190 188 182 181 174

1/16 2/16 1/16

2/16 4/16 2/16

1/16 2/16 1/16
Gaussian bell curve

Gaussian convolution mask
Figure 3.26 Convolution mask for Gaussian blur

3.8.2 Filters in Digital Image Processing Programs
Digital image processing programs like Photoshop and GIMP have an array of filters for
you to choose from, for a variety of purposes. Some are corrective filters for sharpening
or correcting colors. Some are destructive filters for distorting or morphing images. Some
filters create special effects such as simulated brush-strokes, surfaces, and textures. These
filters operate by applying convolutions to alter pixel values. (In Chapter 5, we’ll show that
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filtering can equivalently be applied in the frequency domain.) If you understand how dif-
ferent convolution masks will affect your images, you can apply the predefined filters
more effectively, even using them in combination with one another. You can also create
your own customized masks for creative special effects.

One way to design a convolution mask or predict how a predefined mask will work is to
apply it to three simple types of image data: a block of pixels that contains a sharp edge, a
block where the center value is different from the rest of the values, and a block where all
pixel values are the same. To illustrate these different cases, we’ll change our representa-
tion of the convolution mask slightly, to make it look more like the way custom filters are
presented in Photoshop and GIMP. These application programs allow you to create a cus-
tom filter that performs a weighted sum of pixels with a scaling factor and an offset. The
pixel values are multiplied by the weights in the mask, the product is divided by the scal-
ing factor, and the offset is added to this total. The custom mask window is shown in Fig-
ure 3.27. Assume that blank spaces in the mask are 0s. Since the custom mask varies in its
shape and the number of values it contains, and it also involves scaling and offset factors,
we need to rewrite Equation 3.2 to describe how each new pixel value is derived from
the mask. Let’s assume there are n weights in the mask, numbered in row-major order. Let
the new pixel value be called q and the weights be given by for . The pixel
value corresponding to weight is (that is, the pixel “under” that weight in the mask.)
The scale factor is s and the offset is c. Then the equation for the new pixel value derived
from the mask is

Equation 3.3

q = c aa
n

i=1
wipib>s d + c

piwi

1 …  i …  nwi

Figure 3.27 Custom filter (from Photoshop and GIMP)

In order to preserve the brightness balance of an image, should equal 1. You can

easily see this in the case where all the pixels under the mask have the same value. If

, then the center pixel will be become lighter, and if the center 

pixel will become darker. You can arrange it so that by making some weightsa
n

i=1
wi>s = 1

a
n

i=1
wi>s 6 1a

n

i=1
wi>s 7 1

a
n

i=1
wi>s
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Figure 3.29 Applying an edge-detection filter to a grayscale image

positive and some weights negative, by changing the scaling factor, or by a combination of
both methods. Each variation you try has a slightly different effect on how you sharpen (or
blur) the entire image or affect primarily the edges in the image.

Let’s look at a couple of filters that affect edges. Consider the convolution mask in
Figure 3.28 and how it would operate on the block of pixels labeled block a. (Assume that
for block a, the pixel values extend infinitely to the left and right with the same values in
each row.) If you do the math, you’ll see that along a horizontal edge that goes from light
to dark as you move from top to bottom, the filter detects the edge, making that edge white
while everything else is black. The effect is illustrated in Figure 3.29. If you swap the row
of 1s for the row of –1s, the filter will detect horizontal edges that go from black to white
rather than from white to black as you move down the image. This would make a white
edge along the girl’s bangs rather than along the top of her hair in Figure 3.29. If you
arrange the 1s and –1s vertically rather than horizontally, the filter detects vertical edges
moving one direction or the other.

255 255 255 255

0 0 0 0

0 0 0 0

0 0 0 0

255 255 255 255

255 255 255 255

0 0 0 0

0 0 0 0

255 255 255 255

255 255 255 255

0 0 0 0

0 0 0 0

0 0 0

–1 –1 –1

1 1 1

The mask above applied to block a of pixels yields block b.

Block a Block bMask

Figure 3.28 An edge-detection filter

One of the most useful filters in the repertoire is called the unsharp mask. The name
is misleading because this filter actually sharpens images. The name is derived from the
way the mask is constructed. The idea is that first a blurred (“unsharp”) version of the
image is produced. Then the pixel values in the original image are doubled, and the
blurred version of the image is subtracted from this. The result is a sharpened image, as
shown in Figure 3.30. The blur mask shown in Figure 3.30 is different from the one we
showed above. Variations of the unsharp mask can be created using different sizes of
masks or types of blur masks.
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3.9 Resampling and Interpolation 159

3.9 RESAMPLING AND INTERPOLATION
Resampling is a process of changing the total number of pixels in a digital image. There are
a number of situations in which resampling might be needed. To understand these, you
need to understand the relationship between resolution, the size of an image in pixels, and
print size (discussed in Chapter 2).

Here are four scenarios where you might want to change the print size, resolution, or
total pixel dimensions of a digital image. See if you can tell which require resampling:

1. You scanned in an inch photograph at a high resolution (300 pixels per inch,
abbreviated ppi). You realize that you don’t need this resolution since your printer
can’t print in that much detail anyway. You decide to decrease the resolution, but you
don’t want to change the size of the photograph when it is printed out. If you want your
image processing program to change the image size from inches and 300 ppi to

inches and 200 ppi, does the image have to be resampled?
2. You scanned in a inch image at a resolution of 72 ppi, and it has been imported

into your image processing program with these dimensions. You’re going to display it
on a computer monitor that has 90 ppi, and you don’t want the image to be any smaller
than on the display. Does the image have to be resampled?

3. You scanned in an inch photograph at 200 ppi, and it has been imported into
your image processing program with these dimensions. You want to print it out at a
size of inches. Does the image have to be resampled?

4. You click on an image on your computer display to zoom in closer. Does the image
have to be resampled?

So let’s see how well you did in predicting when resampling is necessary. The key point
to understand is that resampling is required whenever the number of pixels in a digital image
is changed. If the resolution—the ppi—is not changed but the print size is, resampling is
necessary. Resampling is also required if the print size is not changed but the resolution is.
Compare your answers to the answers below.

1. The image has to be resampled in this case. If you have 300 ppi and an image that is
inches, you have a total of pixels. You want300 * 8 * 10 = 24,0008 � 10

4 � 5

8 � 10
4 � 5

4 � 5
8 � 10

8 � 10

8 � 10

1 1

1

1

– =

– =

5

2*original

2 –3 –1 –1

–1

–1

Blur mask Unsharp mask

Original image Image with blur filter applied Image with unsharp mask applied
Figure 3.30 Unsharp mask
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160 Chapter 3 Digital Image Processing

pixels. Some pixels have to be discarded, which is called
downsampling.

2. Again, the image has to be resampled. The image scanned at 72 ppi has pixel di-
mensions of . A computer display that can fit 90 pixels in every inch (in both
the horizontal and vertical directions) will display this image at a size of inches.
Retaining a size of at least inches on the computer display requires upsampling,
a process of inserting additional samples into an image.

3. The image doesn’t have to be resampled to decrease its print size, although you can re-
sample if you choose to. If you specify that you want to decrease the image print size
without resampling, then the total number of samples will not change. The resulting
image file will have exactly the same total number of pixels as before. However, with-
out resampling, the number of pixels per inch will be greater because you’re decreas-
ing the number of inches. If, on the other hand, you specify that you want to decrease
the size and resample, then the resolution will not change, but the total number of pix-
els will. Keeping the same resolution while decreasing the print size implies that you’ll
have fewer samples in the final image. In that case, the image is downsampled.

4. When you zoom in, the image is being upsampled, but only for display purposes.
When you zoom out, the image is being downsampled. The stored image file doesn’t
change, however.

In practice, here is how resampling works. Figure 3.31 shows the Image Size window in
Photoshop and GIMP. The Resample Image is checked. Thus, if you change the width and
height in inches, the width and height in pixels will change accordingly so that the resolu-
tion does not change. Similarly, if you change the width and height in pixels, the width and
height in inches will change.

4 * 5
3.2 � 4

288 � 360
4 � 5

200 * 8 * 10 = 16,000

Figure 3.31 Image Size window, Resample Image checked (from Photoshop and GIMP)

It is interesting to consider what is going on behind the scene when an image processing
program resamples an image. The simplest method for upsampling is replication, a process of
inserting pixels and giving them the color value of a neighboring pre-existing pixel. Replica-
tion works only if you are enlarging an image by an integer factor. An example of replication
on a small block of pixels is shown in Figure 3.32. For each original pixel, a new pixel with the
same color value is inserted to the right, below, and diagonally below and to the right.
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3.9 Resampling and Interpolation 161

Correspondingly, the simplest method of downsampling is row-column deletion, the
inverse of replication.

Think about how replication and its inverse might affect the quality of an image. Row-
column deletion throws away information about the image, so you obviously lose detail.
Replication, on the other hand, makes a guess about the colors that might have been sam-
pled between existing samples—if the sampling rate had been higher. The values that are
introduced in replication may not be the exact colors that would have been detected if the
image had been sampled at a higher resolution to begin with. Thus, even though an upsam-
pled image gains pixels, it doesn’t get any sharper. In fact, usually the image loses quality.
Since the new pixel values are copied from neighboring pixels, replication causes blocki-
ness in the resampled image. Magnifying a view of an image in an image processing pro-
gram can be done with simple replication. The image gets bigger, but the blockiness caused
by upsampling becomes increasingly evident the more you zoom in. This is illustrated in
Figure 3.33. Of course there is no harm done to the file, since the pixel values are upsam-
pled only for display purposes. The values stored in the image file don’t change.

220 230 240

235 242 190

118 127 135

220 220 230 230 240 240

220 220 230 230 240 240

235 235 242 242 190 190

235 235 242 242 190 190

118 118 127 127 135 135

118 118 127 127 135 135

Original pixels

Pixels after replication
Figure 3.32 Resampling by replication

Figure 3.33 Image resampled as you zoom in

You’ll notice a similar effect if you upsample a digital image in order to print it out at a
larger size. Say that you scan in a inch image at 200 pixels per inch but decide that
you want to print it out at a size of inches. Increasing the size and keeping the res-
olution at 200 ppi requires upsampling, since you’ll end up with more pixels than you orig-
inally captured. But keep in mind that the picture you print out at inches can’t be
any clearer or more detailed than the original inch image.

The point is that the only true information you have about an image is the information
you get when the image is originally created—by taking a digital photograph or scanning in
a picture. Any information you generate after that—by upsampling—is only an approxima-
tion or guess about what the original image looked like. Thus, it’s best to scan in digital im-
ages with sufficient pixel dimensions from the outset. For example, you could scan the

inch image at 400 ppi so that you could then increase its print size to inches8 � 104 � 5

4 � 5
8 � 10

8 � 10
4 * 5
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162 Chapter 3 Digital Image Processing

without resampling. If you deselect “resample image” in your image processing program
and then change the image’s size to inches, the number of pixels per inch will change
so that the total number of pixels does not change. That is, the resolution will automatically
be cut in half as the print size is doubled. Then you’ll have your inches at a resolu-
tion of 200 ppi, which may be good enough for the print you want to make, and you won’t
have had to generate any new pixels that weren’t captured in the original scan.

Even with your best planning, there will still be situations that call for resampling. For-
tunately, there are interpolation methods for resampling that give better results than simple
replication or discarding of pixels. Interpolation is a process of estimating the color of a
pixel based on the colors of neighboring pixels. In Figure 3.31, notice the drop-down box
beside the Resample Image checkbox. This is where you choose the interpolation method:
nearest neighbor, bilinear, or bicubic. Nearest neighbor is essentially just replication when
the scale factor is an integer greater than 1. However, it can be generalized to non-integer
scale factors and described in a manner consistent with the other two methods, as we’ll do
below. We’ll describe these algorithms as they would be applied to grayscale images. For
RGB color, you could apply the procedures to each of the color channels.

For this discussion, we describe scaling as an affine transformation of digital image data
that changes the total number of pixels in the image. An affine transformation is one that
preserves collinearity. That is, points that are on the same line remain collinear, and lines
that are parallel in the original image remain parallel in the transformed image. Clearly,
scaling is just another word for resampling, but we introduce this synonymous term so that
we can speak of a scale factor. If the scale factor s is greater than 1, the scaled image will
increase in size on the computer display. If it is less than 1, the image will decrease in size.
The scale factor doesn’t have to be the same in both directions, but we will assume that it
is in this discussion for simplicity.

With the scale factor s we can define a general procedure for resampling using interpo-
lation, given as Algorithm 3.1.

8 � 10

8 � 10

ALGORITHM 3.1

algorithm resample
*Input: A grayscale image f of dimensions .

Scale factor s.
Output: fs, which is image f enlarged or shrunk by scale factor s.*
{

* create a new scaled image fs with dimensions 
for to 

for to {
fs(i, j) interpolate(i, j, f, method)

}
}
algorithm interpolate(i, j, f, method) {
*i and j are pixel coordinates in the scaled image fs.*
a i s *This is real-number division since s is real.*
b j s>=

>>>=
>>

=
w¿ - 1j =  0

h¿ - 1i =  0
w¿ and h¿*/> h¿ = (integer)(h * s)

w¿ = (integer)(w * s)

>
w * h>
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3.9 Resampling and Interpolation 163

*a and b are coordinates in the original image, f. Note that a and b are not necessar-
ily integers. Interpolation entails finding integer-valued coordinates that are neigh-
bors to a and b.*

if method “nearest neighbor” then
return f(round(a), round(b))

else if method “bilinear” then {
* Find the coordinates of the top left pixel in the neighborhood of (a, b) *

x floor(a)
y floor(b)

*Each pixel’s weight is based on how close it is to (a, b)*
value 0
for m 0 to 1 {

for n 0 to 1 {
t

}
}
return value

}
else if method “bicubic” then {

*To simplify this algorithm, we assume that f(x, y) always has sixteen neighbors
within the bounds of the image. In practice, the algorithm needs to be adjusted to ac-
count for pixels at edges of the image*

x floor(a)
y floor(b)
value 0

*Consider the sixteen neighboring pixels around (a, b)
for to 2

for to 2 {
*Determine how far position (a, b) is from each of the sixteen neighbors*

neighborX x m
neighborY y n

if t 1

else

if u 1

else

value value x_coeff * y_coeff * f(neighborX, neighborY)
}

return value
}

}

+=
y-coeff = 4 - 8 * u + 5 * u2 - u3

y-coeff = 1 - 2 * u2 + u3
6

x-coeff = 4 - 8 * t + 5 * t2 - t3

x-coeff = 1 - 2 * t2 + t3
6

u = ƒ neighborY -  b ƒ
t = ƒ neighborX - a ƒ

+=
+=

>> n = -1
m = -1

> =
=
=

>
> =

value = value + (1 - |t|)*(1 - |u|)*f(x + m, y + n)
u = b - (y + n)

=  a - (x + m)
=

=
=

>> =
=

>> =

=
>

>
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164 Chapter 3 Digital Image Processing

Pixel at position (i,j)
where i = 6 and j = 7

Original image f,
6 � 6 pixels

Enlarged image fs, scaled by
scale factor s = 16/6

Step 1.  Scale the image. Pixel position (0,0)

Step 2.  Map each pixel in the scaled image back to a
position in the original image.

Original image f

Scaled image fs

Position (6,7) in scaled image
maps back to position
(2.25, 2.625) in original image.

Figure 3.34 The first two steps in resampling

Algorithm 3.1 describes three different interpolation methods—nearest neighbor, bilinear,
and bicubic interpolation. All three begin with the same two steps, illustrated in Figure 3.34.
First, the dimensions of the scaled image are determined by multiplying the original dimen-
sions by the scale factor. A new bitmap of the scaled dimensions is created. In the example, a

pixel image called f is enlarged to a image called fs, so the scale factor s is16 � 166 � 6

M03_BURG5802_01_SE_C03.QXD  7/2/08  12:11 PM  Page 164



3.9 Resampling and Interpolation 165

a and b are not necessarily integers, so they don’t
necessarily correspond to actual pixel coordinates in
the original image.

The nearest neighbor algorithm assigns to fs(i,j)
the color value f(round(a), round(b)) from the original
image.

fs(i,j) =
f(round(a), round(b))

The nearest neighbor is marked in gray.

Position (a,b),
where a = i/s
and b = j/s

s is the scale
factor

Figure 3.35 Nearest neighbor interpolation

The values of the pixels in the scaled image are to be determined by interpolation. The
second step is to map each pixel position in the scaled image back to coordinates within the
original image. A pixel at position (i, j) in fs maps back to position in f. Clearly, not
all pixel positions in fs map back to integer positions in f. For example, (6, 7) maps back to
(2.25, 2.625). The idea in all three interpolation algorithms is to find one or more pixels close
to position in f, and use their color values to get the color value of fs(i, j).

Nearest neighbor interpolation simply rounds down to find one close pixel whose value
is used for fs(i, j) (Figure 3.35). In our example, f(2, 3) is used as the color value of fs(6, 7).
If you think about this, you’ll realize that when s is an integer greater than 1, the nearest
neighbor algorithm is effectively equivalent to pixel replication. However, it also works
with noninteger scale factors, as shown in our example.

To describe the three interpolation algorithms discussed earlier, it is sufficient to spec-
ify the convolution mask for each. Let’s do this for nearest neighbor interpolation. We
have a image called f that is being scaled by factor s, with the result being writtenw � h

(i/s, j/s)

(i/s, j/s)

16/6.

Position (x,y)
Position (a,b)

Position (x,y+1)

Position (x+1,y) Position (x+1,y+1)

0

0 0

1

Position with coordinates closest to both a and b
gets a 1 in the convolution kernel.

Nearest neighbor interpolation

Figure 3.36 Example of a nearest neighbor convolution mask
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166 Chapter 3 Digital Image Processing

Position
(a,b)

Bilinear interpolation uses an average color value
of the four pixels surrounding position (a,b) in the
original image.  Each neighbor’s contribution to the
color is based on how close it is to (a,b). Let

x = floor(a)
y = floor(b)

Then the pixels surrounding position (a,b) are

f(x, y)
f(x+1, y)
f(x+1, y+1)
f(x, y+1) f(x,y) f(x,y+1)

f(x+1,y) f(x+1,y+1)

Neighborhood is
shown in gray.

Figure 3.37 Bilinear interpolation

to a new image bitmap fs of dimensions and . The color value of
each pixel fs(i, j) is obtained by mapping back to coordinates in f with and

.
Let and . Then the neighborhood of in f consists of

, , , and . For each pixel fs(i, j), define the
nearest neighbor convolution mask to be a matrix of coefficients as
follows:

for and ,
if and 

otherwise 

This effectively puts a 1 in the pixel position closest to and a 0 everywhere else,
so fs(i, j) takes the value of its single closest neighbor, as shown in the example in Fig-
ure 3.36. Note that the position of the 1 in the mask depends on the location of . The
mask is applied with its upper left element corresponding to f(x, y).

You may notice that the numbering of the mask positions is not “flipped” the same way
it was in the definition of the linear convolution above. The convolutions for interpolation
are different in that they are not applied to every pixel in the original image. The concept is
the same, however.

Bilinear interpolation uses four neighbors and makes fs(i, j) a weighted sum of their
color values. The contribution of each pixel toward the color of fs(i, j) is a function of how
close the pixel’s coordinates are to (a, b). The neighborhood is illustrated in Figure 3.37.
The method is called bilinear because it uses two linear interpolation functions, one for
each dimension. This is illustrated in Figure 3.38. Bilinear interpolation requires more
computation time than nearest neighbor, but it results in a smoother image, with fewer
jagged edges.

(a, b)

(a, b)

hnn(m, n) = 0
-  0.5 …  (y + n) -  b 6  0.5-  0.5 …  (x + m) -  a 6  0.5hnn(m, n) = 1

0 …  n …  10 …  m …  1

2 * 2hnn(m, n) 

f(x + 1, y + 1)f (x, y + 1)f(x + 1, y)f(x, y)
(a, b)y = floor(b)x = floor(a)

b = j>s a = i>s(i, j)
h¿ = h * sw¿ = w * s
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Position (x,y)
Position (a,b)

Position (x,y+1)

Position (x+1,y) Position (x+1,y+1)

This distance is b–y

This distance is a–x

The color of the pixel in image fs is a weighted
average of the four neighboring pixels. Weights
come from each pixel’s proximity to (a,b).

Bilinear interpolation

Figure 3.38 Weights used in bilinear interpolation

Bicubic interpolation uses an “average” color value
of the 16 pixels surrounding position (a,b) in the
original image. The weight of each neighbor’s
contribution is based on a cubic equation that accounts
for how close each neighbor is.

Position (x,y)

Position (a,b)

Neighbors are shaded in gray.  The neighborhood of (a,b)
extends from x–1 to x+2 in the vertical direction and
from y–1  to y+2 in the horizontal direction.

Figure 3.39 Bicubic interpolation

To specify the convolution mask for bilinear interpolation, let 
and for and . Then the mask 
is defined as 

Bicubic interpolation uses a neighborhood of sixteen pixels to determine the value of
fs(i, j). The neighborhood of extends from to in the vertical direction
and from to in the horizontal direction, as illustrated in Figure 3.39. They � 2y - 1

x � 2x - 1(a, b)

hbl(m, n) = (1 - |t|)(1 - |u|).
hbl (m, n)0 …  n …  10 …  m …  1u(m, n) = b - (y + n)

t(m, n) = a - (x + m) Supplement on
interpolation for
resampling:

worksheet
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g(t(m))g(u(n))

Bicubic interpolation

Position (a,b)For –1<=m<=2 and –1<=n<=2,
t(m) = a – (x + m)
u(n) = b –  (y + n )

f(t(m))  = 1 – 2t(m)2 + |t(m)|3

f(u(n))  = 1 – 2u(n)2 + |u(n)|3

g(t(m)) = 4 – 8|t(m)| + 5t(m)2 – |t(m)|3

g(u(n)) = 4 – 8|u(n)| + 5u(n)2 – |u(n)|3

Position (x,y)

g(t(m))f(u(n)) g(t(m))f(u(n)) g(t(m))g(u(n))

f(t(m))g(u(n))

f(t(m))g(u(n))

g(t(m))g(u(n))

f(t(m))f(u(n)) f(t(m))f(u(n)) f(t(m))g(u(n))

f(t(m))f(u(n)) f(t(m))f(u(n)) f(t(m))g(u(n))

g(t(m))g(u(n))g(t(m))f(u(n))g(t(m))f(u(n))

Figure 3.40 Convolution mask for bicubic interpolation

Supplements on
LZW compression:

interactive tutorial

programming 
exercise

method is called bicubic because the weighted average of pixels in the pixel neigh-
borhood is based on two cubic interpolation functions, one for each dimension (Figure 3.40).
The cubic functions used in our example are sometimes referred to as a “Mexican Hat”
convolution mask. Other functions can be used. Bicubic interpolation requires even more
computation time and memory than bilinear interpolation, but it creates a smoother image
while preserving detail from the original image.

4 � 4

3.10 DIGITAL IMAGE COMPRESSION

3.10.1 LZW Compression
LZW compression is a method that is applicable to both text and image compression. LZW
stands for Lempel-Ziv-Welch, the creators of the algorithm. Lempel and Ziv published the
first version of the algorithm in 1977 (called LZ77), and the procedure was revised and
improved by Welch in 1984. The algorithm was first widely used in the 1980s in the
compress Unix utility. It then went through a number of versions and patents with Sperry,
Unisys, and CompuServ Corporations. The method is commonly applied to GIF and TIFF
image files. The patents are relevant to GIF and TIFF software developers but do not ham-
per an individual’s right to own or transmit files in GIF or TIFF format. In any case,
Unisys’s main patents for LZW expired in 2003. 

The LZW algorithm is based on the observation that sequences of color in an image file
(or sequences of characters in a text file) are often repeated. Thus, the algorithm uses a
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3.10 Digital Image Compression 169

sliding expandable window to identify successively longer repeated sequences. These are
put into a code table as the file is processed for compression. An ingenious feature of the
algorithm is that the full code table does not have to be stored with the compressed file;
only the part of it containing the original colors in the image is needed, and then the rest—
the codes for the sequences of colors—can be regenerated dynamically during the decod-
ing process. Let’s see how this works.

With a first pass over the image file, the code table is initialized to contain all the indi-
vidual colors that exist in the image file. These colors are encoded in consecutive integers.
Now, imagine that the pixels in the image file, going left to right and top to bottom, are
strung out in one continuous row. After initialization, the sliding expandable window
moves across these pixels. The window begins with a width of one pixel. (The height is
always one pixel.) If the pixel sequence is already in the code table, the window is succes-
sively expanded by one pixel until finally a color sequence not in the table is under the win-
dow. Say that this sequence is pixels long. Then the code for the sequence that is 
pixels long is output into the compressed file, and the -pixel-long sequence is put into the
code table. This continues until the entire image is compressed. The procedure is illustrated
in Figure 3.41.

The following algorithm that will accomplish the procedure pictured in Figure 3.41.

n
n - 1n

ALGORITHM 3.2 LZW COMPRESSION ALGORITHM

algorithm LZW
*Input: A bitmap image.

Output: A table of the individual colors in the image and a compressed version of the
file.
Note that is concatenation.*
{

initialize table to contain the individual colors in bitmap
pixelString first pixel value
while there are still pixels to process {

pixel next pixel value
stringSoFar pixelString pixel
if stringSoFar is in the table then

pixelString stringSoFar
else {

output the code for pixelString
add stringSoFar to the table
pixelString pixel

}
}
output the code for pixelString

}

�

�

��
�

�

>�

>

worksheet

The decoding process requires only a table initialized with the colors in the image. From
this information, the remaining codes are recaptured as the decoding progresses. The
decompression algorithm is given as Algorithm 3.3.
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170 Chapter 3 Digital Image Processing

etc.

Window is over first sequence of colors not already in table.
Output code for one yellow pixel, and put the new sequence
in the table.

Step 1:

Step 2:

Window slides over to next sequence not yet compressed
and not already in the table.  This is three yellow pixels in
a row.  Output code for two yellow pixels, and put the new
sequence in the table.

etc.

etc.

Step 3:

Window slides over to next sequence not yet compressed
and not already in the table.  This is two yellow pixels and
one green.  Output code for two yellow pixels, and put the
new sequence in the table.

Continue similarly...

etc.Code 0 1 2 3 4 5 6 7

Color

Initial color table: Space for more codes:

etc.Code 0 1 2 3 4 5 6

Color

etc.Code 0 1 2 3 4 5 6 7 8

Color

etc.Code 0 1 2 3 4 5 6 7 8 9

Color

Compressed file so far is 5.

Compressed file so far is 5 7.

Compressed file so far is 5 7 7.

Figure 3.41 A partial trace of LZW compression
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Supplements on
Huffman encoding:

interactive tutorial

programming 
exercise

worksheet

ALGORITHM 3.3 LZW DECOMPRESSION ALGORITHM

algorithm LZW_decompress
*Input: Compressed bitmap image and table of individual colors in image.

Output: Decompressed image.*
{
stringSoFar NULL
while there are still codes to process in the code string {

code next code in the code string
colors the colors corresponding to code in the table
if colors NULL *Case where code is not in the table*
*stringSoFar[0] is the first color in stringSoFar*

colors stringSoFar stringSoFar[0]
output colors
if stringSoFar NULL

put stringSoFar colors[0] in the table
stringSoFar colors

}
}

�
�

! �

��
>> >>��

�
�

�

>>

3.10.2 Huffman Encoding
Huffman encoding is another lossless compression algorithm that is used on bitmap image
files. It differs from LZW in that it is a variable-length encoding scheme; that is, not all
color codes use the same number of bits. The algorithm is devised such that colors that
appear more frequently in the image are encoded with fewer bits. Thus, it is a form of
entropy encoding, like the Shannon-Fano algorithm described in Chapter 1. The Huffman
encoding algorithm requires two passes: (1) determining the codes for the colors and 
(2) compressing the image file by replacing each color with its code. 

In the first pass through the image file, the number of instances of each color is deter-
mined. This information is stored in a frequency table. A tree data structure is built from
the frequency table in the following manner: A node is created for each of the colors in the
image, with the frequency of that color’s appearance stored in the node. These nodes will
be the leaves of the code tree. Let’s use the variable freq to hold the frequency in each node.
Now the two nodes with the smallest value for freq are joined such that they are the chil-
dren of a common parent node, and the parent node’s freq value is set to the sum of the freq
values in the children nodes. This node-combining process repeats until you arrive at the
creation of a root node. The algorithm for this process is given in Algorithm 3.4, and a short
trace is given in Figures 3.42 to 3.44.

Consider this simple example. Say that your image file has only 729 pixels in it, with the
following colors and the corresponding frequencies:

white 70
black 50
red 130
green 234
blue 245
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White
70

Black
50

Red
130

Green
234

Blue
245

Figure 3.42 Leaf nodes of Huffman tree

The initial nodes are as pictured in Figure 3.42. The arrangement of the nodes is not
important, but moving nodes around as the tree is constructed can make the tree easier to
understand.

ALGORITHM 3.4

algorithm Huffman_encoding
*Input: Bitmap image.

Output: Compressed image and code table.*
{

*Let color_freq[] be the frequency table listing each color that appears in the
image and how many times it appears. Without loss of generality, assume that all
colors from 0 to n � 1 appear in the image.*

initialize color_freq
*Assume each node in the Huffman tree contains variable c for color and variable

freq for the number of times color c appears in the image.*
for i 0 to n � 1 {

*Let nd.c denote the c field of node nd*
create a node nd such that nd.c i and nd.freq color_freq[i]

}
while at least two nodes without a parent node remain {

node1 the node that has the smallest freq among nodes remaining that have no
parent node

node2 the node that has the second smallest freq among nodes remaining that
have no parent node
*Assume some protocol for handling cases where two of sums are the same*

nd_new a new node
nd_new.freq node1.freq node2.freq
make nd_new the parent of node1 and node2

}
*Assign codes to each color by labeling branches of the Huffman tree*

label each left branch of the tree with a 0 and each right branch with a 1
for each leaf node {

travel down the tree from the root to each leaf node, gathering the code for the
color associated with the leaf nodes

put the color and the code in a code table
}
using the code table, compress the image file

}

>>

��
�

>>
�

�

��
>> �

>>
>

>
>>
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Figure 3.43 Combining nodes to create a Huffman tree

Combining nodes into a Huffman tree proceeds as pictured in Figure 3.43. Note that at
any point in this process, any two nodes that do not already have a parent node can be com-
bined—as long as they are the nodes with the least value. That is, sometimes you might
combine two leaf nodes, sometimes two interior nodes, or sometimes a leaf node with an
interior node. Also note that if two minimum-value nodes have the same value, the choice
of which one to use is arbitrary. This implies that there may be more than one legal Huff-
man tree—and thus more than one possible code table—derivable from a set of leaf nodes
(i.e., for a given image).

Once the tree has been created, the branches are labeled with 0s on the left and 1s on the
right. Then for each leaf node, you traverse the tree from the root to the leaf, gathering the
code on the way down the tree. This is pictured in Figure 3.44.

After the codes have been created, the image file can be compressed using these codes.
Say that the first ten pixels in the image are wwwkkwwbgr (with black abbreviated as k,
white as w, red as r, green as g, and blue as b). The compressed version of this string of
pixels, in binary, is

000000000001001000000111001
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If you think about how the Huffman encoding algorithm works, you’ll understand why
it is designed the way it is. By combining least-valued nodes first and creating the tree from
the bottom up, the algorithm ensures that the colors that appear least frequently in the
image have the longest codes. Also, because the codes are created from the tree data struc-
ture, no code can be a prefix of another code. This is a necessary characteristic of the codes
because the codes are not necessarily the same length. Imagine that you had the string
11101011100000001001 to decode, and there was both a 1 (as black, say) and an 11 (the
code for white) in the code table. How would you know whether to decode the first two 1s
as two black pixels or as a single white pixel? This is the problem you would encounter if
one code was a prefix for another.

To understand decoding, picture what you would have in the compressed file. Either a
code table, the Huffman tree (in which the codes are implicit), or the frequency table must
be saved so that the Huffman tree can be used for the decoding. The easiest way to imag-
ine the decoding process is to assume that the Huffman tree is available to the decoder.
Now picture how the decoder would decode the encoded bitmap. Bits are read sequentially
from the encoded file, guiding the traversal down the Huffman tree until a leaf node is
encountered. A 0 bit means take a left branch. A 1 bit means take a right branch. When the
decoder arrives at a leaf node, it finds the color associated with the bit sequence just con-
sumed. Then the code for this sequence is output, and the search continues for the next
sequence, with the decoder moving back to the root of the Huffman tree.

To determine the compression rate for a Huffman encoded file, we need to make some
assumptions about how the codes are stored in the file. Think about the implications of
storing the codes in a code table. The first column of each row would contain one of the
original colors from the image file—let’s say a 24-bit RGB color. Associated with each
color is its code. But since the codes are of variable length, the decoder would have to know
how many bits there are in this code. Thus there would first have to be a value indicating

Label branches with 0s on the left and 1s on the right.

White 000
Black 001
Red 01
Green 10
Blue 11

For each leaf node, traverse tree from root to leaf node and gather code
for the color associated with the leaf node.

Note that not all codes are the same number of bits, and no code is a prefix of
any other code.

0

0

0 1

1

1
0 1

White
70

Black
50

Red
130

Green
234

Blue
245

120

250

479

729

Figure 3.44 Creating codes from a Huffman tree
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the length of this code. An alternative to storing the code table is to store the frequency
table and have the decoder regenerate the Huffman tree. Then there would be the encoded
image itself in the compressed file. With this in mind, let’s compute the compression rate
for our example.

Assuming 24-bit color, the original image size is computed as follows:

Now for the compressed image. We can get the size of the compressed image by con-
sidering that we have 70 white bits encoded with three bits each, 50 black pixels encoded
with three bits each, 130 red pixels encoded with two bits each, 234 green pixels encoded
with two bits each, and 245 blue pixels encoded with two bits each. That’s

bits in the compressed image. Thus
the compression rate is 17,496 : 1,578, better than 11 : 1.

You may notice that we didn’t really need 24 bits per color if we had only five colors.
We could have used just eight bits. Even if we assume only eight bits per color in the orig-
inal file, we get a compression rate of 3.7 : 1. This is just a small example (a pixel
image), but it gives you the basic concepts.

Huffman encoding is useful as a step in JPEG compression, as we will see in the next
section.

3.10.3 JPEG Compression
JPEG is an acronym for Joint Photographic Experts Group. In common usage, JPEG com-
pression refers to a compression algorithm suitable for reducing the size of photographic
images or continuous-tone artwork—pictures where the scene transitions move smoothly
from one color to another, as opposed to cartoon-like images where there are sharp divi-
sions between colors. If you see a file with the .jpg or .jpeg suffix, you can assume it has
been compressed with the JPEG method, but it is also possible to apply JPEG compression
to images saved in TIFF, PICT, and EPS files. Although JPEG is a lossy compression
method, it is designed so that the information that is lost is not very important to how the
picture looks—that is, the algorithm removes closely spaced changes in color that are not
easily perceived by the human eye. This is made possible by transforming the image data
from the spatial domain to the frequency domain. When the image is represented in terms
of its frequency components, it is possible to “throw away” the high frequency compo-
nents, which correspond to barely perceptible details in color change. 

Another advantage of JPEG compression is that image processing programs allow you
to choose the JPEG compression rate, so you can specify how important the image size is
versus the image’s fidelity to the original subject. JPEG compression on a 24-bit color
image yields an excellent compression rate. With a rate of about 10 : 1 or 20 : 1, you’ll no-
tice hardly any difference from the original to the compressed image. Even compression
rates up to 50 : 1 can give acceptable results for some purposes. The main disadvantage to
JPEG compression is that it takes longer for the encoding and decoding than other algo-
rithms require, but usually the compression/decompression time is not noticeable and is
well justified when compared with the savings in storage space and download time
required for the image file. Without JPEG compression, most people would not want to
spend time it would take to download pictures on web pages.

To be precise, the term JPEG does not refer to a standardized file format, but only
more generally to a method of compressing image files that was created by the Joint

27 * 27

(70 + 50) * 3 +  (130 + 234 + 245) * 2 =  1,578

729 pixels * 24 bits/pixel =  17,496 bits in the original image

Supplements 
on JPEG
compression:

interactive tutorial

worksheet
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Photographic Experts Group in 1990. A standardized JPEG file format with the name JFIF
(JPEG File Interchange Format) was introduced about a year later by C-Cube Microsys-
tems. An alternative file format designed by C-Cube, called TIFF/JPEG, offers the ability
to store more information about the image file, but the simpler JFIF format has become the
de facto standard.

The algorithm we describe below is the basic method that has been used for JPEG com-
pression since the 1980s, adapted from a scheme proposed by Chen and Pratt. The key step
in this algorithm is the transformation of image data from the spatial to the frequency
domain by means of the discrete cosine transform (DCT). The main steps are listed in
Algorithm 3.5. Let’s consider the motivation and then examine some of the details of each
of these steps.

ALGORITHM 3.5

algorithm jpeg
*Input: A bitmap image in RGB mode.

Output: The same image, compressed.*
{

Divide image into pixel blocks
Convert image to a luminance/chrominance model such as YCbCr (optional)
Shift pixel values by subtracting 128
Use discrete cosine transform to transform the pixel data from the spatial domain
to the frequency domain
Quantize frequency values
Store DC value (upper left corner) as the difference between current DC value and
DC from previous block
Arrange the block in a zigzag order
Do run-length encoding
Do entropy encoding (e.g., Huffman)

}

8 �  8

>>

Step 1. Divide the image into pixel blocks and convert
RGB to a luminance/chrominance color model.

Motivation: The image is divided into pixel blocks 
to make it computationally more manageable for the next steps.
Converting color to a luminance/chrominance model makes it
possible to remove some of the chrominance information, to which
the human eye is less sensitive, without significant loss of quality in
the image.

Details: For efficiency reasons, JPEG compression operates on
pixel blocks on the image file. If the file’s length and width

are not multiples of eight, the bitmap can be padded and the extra
pixels removed later.

JPEG compression can be performed on 24-bit color or 8-bit
grayscale images. If the original pixel data is in RGB color mode,
then there is an pixel block for each of the color channels.8 � 8

8 � 8

8 � 8

8 : 8
ASIDE: If you know something about compu-
tational complexity, you can understand how di-
viding the image into blocks makes exe-
cution of the DCT less computationally
expensive. Let’s assume that an DCT al-
gorithm is used, where n is the dimension of the
pixel block horizontally and vertically. If you
apply this algorithm on a block, the al-
gorithm takes on the order of 
steps. Alternatively, you can apply the algo-
rithm on four blocks. This requires on the
order of steps, which is fewer.
Applying the DCT on four blocks covers
the same total pixel area as applying it to a

block, but in fewer steps. It’s computa-
tionally more manageable to use smaller blocks.
16 * 16

8 * 8
4 * 83 = 2048

8 * 8

163 =  4096
16 * 16

O(n3)

8 *  8
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Figure 3.45 Chrominance subsampling
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The blocks for these color channels are processed separately with the steps described
below, but the three blocks are grouped so that the image can be reconstructed upon
decoding.

Converting the image file from RGB to a model like YCbCr makes it possible to achieve
an even greater compression rate by means of chrominance subsampling. As discussed in
Chapter 2, the YCbCr color model represents color in terms of one luminance component,
Y, and two chrominance components, Cb and Cr. The human eye is more sensitive to
changes in light (i.e., luminance) than in color (i.e., chrominance). Thus, we need less
detailed information with regard to chrominance, since we won’t notice very subtle differ-
ences anyway. Transforming directly from RGB to one of the luminance/chrominance
models is a straightforward linear operation, as discussed in Chapter 2.

Simply doing this transformation doesn’t reduce the number of bits per pixel. However,
it does separate the pixel data so that some of it can be discarded. Chrominance subsam-
pling (also called chrominance downsampling) is a process of throwing away some of the
bits used to represent pixels—in particular, some of the color information. For example,
with YCbCr color mode, we might choose to save only one Cb value and one Cr value but
four Y values for every four pixel values. Three commonly used subsampling rates are pic-
tured in Figure 3.45. The conventional notation for luminance/chrominance subsampling is
in the form . Common subsampling rates are 4 : 1 : 1, 4 : 2 : 0, and 4 : 2 : 2. To understand
what these numbers represent, count the number of samples taken for Y and Cb (or Cr,
since they are the same) in each pair of four-pixel-wide rows. a is the number of Y samples
in both rows. b is the number of Cb samples in the first row (and also the number of Cr sam-
ples). c is the number of Cb (and Cr samples) in the second row. Note that we have not
specified how the Cb and Cr values are derived. Just one of the values in a sub-block could
be used, or the values could be averaged. (In fact, MPEG-1 and MPEG-2 video compres-
sion use different methods for determining the single chrominance values corresponding to
four luminance values in 4 : 2 : 0 downsampling.)

a : b : c

With RGB color mode, we can imagine that for each pixel section of the image,
there are actually three blocks to be processed, one for each of the R, G, and B color
channels. With YCbCr color mode, we have to picture this a little differently. We begin by
dividing the image into pixel macroblocks. Then, with 4 : 2 : 0 chroma downsam-
pling, we get four blocks of Y data for every one block of Cb and one 
block of Cr data. This is pictured in Figure 3.46. Each of the blocks undergoes the

8 � 88 � 88 � 8
16 � 16

8 � 8
8 � 8
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With 4:2:0 YCbCr chrominance subsampling,
a 16 � 16 macroblock yields:
–four 8 � 8 blocks of Y values
–one 8 � 8 block of Cb values
–one 8 � 8 block of Cr values
Each black location represents one Cb
and one Cr sample taken for a block 
of four pixels.  Y samples are taken 
at all locations.
Figure 3.46 Chrominance subsampling

remaining steps of the algorithm, and the resulting compressed data is reconstructed upon
decoding.

You can see that using a luminance/chrominance color model and then chrominance sub-
sampling reduces the image file size even before the rest of the compression steps are
performed. Consider the reduction in file size if 4:2:0 downsampling is used by counting the
number of bytes in an area of pixels with a width of four pixels and a height of two pixels—
eight pixels total. Assuming that each component requires one byte, an unsubsampled image
requires bytes. Subsampling at a rate of 4:2:0 requires bytes
(eight for the Y component but only two for each of the Cb and Cr). This is a 2:1 savings.

Chrominance subsampling is not a required step in JPEG compression, and some JPEG
compressors allow you to turn this option off if you think that subsampling will compro-
mise the desired sharpness of your image. Usually, however, this isn’t necessary.

We will trace through an example of JPEG compression performed on an block
of a grayscale image. In grayscale images, the RGB color channels all have the same value,
so it’s necessary to store only one byte value per pixel. Thus, our example will need to show
the processing of only one block for an pixel area. But keep in mind that if
4 : 2 : 0 chroma subsampled YCbCr color is used, for every pixel area, there are
four blocks of Y data and one each of Cb and Cr data. If RGB color is used, there are
three blocks—one each for R, G, and B—for every pixel area.8 * 88 * 8

8 * 8
16 * 16

8 * 88 * 8

8 * 8

8 + (2 * 2) = 128 * 3 = 24
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Figure 3.47
pixel area, enlarged

8 * 8

Step 2. Shift values by –128 and transform from the spatial to the frequency domain.

Motivation: On an intuitive level, shifting the values by –128 is like looking at the
image function as a waveform that cycles through positive and negative values. This step is
a preparation for representing the function in terms of its frequency components. Trans-
forming from the spatial to the frequency domain makes it possible to remove high fre-
quency components. High frequency components are present if color values go up and
down quickly in a small space. These small changes are barely perceptible in most people’s
vision, so removing them does not compromise image quality significantly.

Details: Let’s review briefly what was covered in Chapter 2 concerning the spatial versus
the frequency domain: When an digital image is represented in the spatial domain,
it can be stored in a two-dimensional array where each element in the array is the color
value—or amplitude—of the image at that point. Thus, a two-dimensional digital image
bitmap defines a surface, each pixel value telling how high the surface is at a given point. In
this sense, we can view the image data as a two-dimensional waveform. Figure 3.47 shows an

grayscale pixel area, and Figure 3.48 gives the corresponding surface in the spatial do-
main. Viewing the image data as a waveform leads us to an alternative representation of the
data that is equivalent to the spatial domain. When digital image data is transformed from the
spatial to the frequency domain, each value in the array indicates “how much” of
each frequency component exists in the waveform. That is, the elements in the array are co-
efficients by which we multiply the cosine basis functions such that these functions can be
summed to yield the surface of the image.

M * N

8 * 8

M * N
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Figure 3.48 Figure 3.47 graphed in the spatial domain

If the spatial and frequency domains give equivalent representations of a digital image,
why do we need to transform from one to the other? The answer is that sometimes it is con-
venient to rearrange data so that we can access certain parts more easily. In this case, it is
useful to separate out the high frequency components of the image, because these are the
parts to which the human eye is least sensitive. High-frequency components in an image
correspond to places where colors change in a small space. This kind of detail can be
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180 Chapter 3 Digital Image Processing

TABLE 3.4 Grayscale Values for Pixel Area Shown 
in Figure 3.49

222 231 229 224 216 213 220 224

216 229 217 215 221 210 209 223

211 202 283 198 218 207 209 221

214 180 164 188 203 193 205 217

209 171 166 190 190 178 199 215

206 177 166 179 180 178 199 210

212 197 173 166 179 198 206 203

208 208 195 174 184 210 214 206

8 : 8

Figure 3.49 Grayscale image and enlarged pixel area taken from the image8 * 8

almost imperceptible, so eliminating it has little effect on the perceived difference between
the original and the compressed image.

The DCT is a mathematical procedure that transforms image data from the spatial to the
frequency domain. Chapter 2 describes this procedure in detail. It is a lossless procedure,
aside from the small unavoidable error introduced through floating point arithmetic. The
DCT performs the transform in one direction, and the inverse DCT can restore the original
data without loss of information.

We will trace through an example to see the effects of JPEG compression. The example
is based on an pixel area taken from the picture shown in Figure 3.49.

The pixel values are given in Table 3.4, and the values shifted by –128 are given in
Table 3.5.

8 * 8
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TABLE 3.5 Pixel Values for Image in Figure 3.49 Shifted
by –128

94 103 101 96 88 85 92 96

88 101 89 87 93 82 81 95

83 74 55 70 90 79 81 93

86 52 36 60 75 65 77 89

81 43 38 62 62 50 71 87

78 49 38 51 52 50 71 82

84 69 45 38 51 70 78 75

80 80 67 46 56 82 86 78

TABLE 3.6 DCT of an Pixel Area

585.7500 -24.5397 59.5959 21.0853 25.7500 -2.2393 -8.9907 1.8239

78.1982 12.4534 -32.6034 -19.4953 10.7193 -10.5910 -5.1086 -0.5523

57.1373 24.829 -7.5355 -13.3367 -45.0612 -10.0027 4.9142 -2.4993

-11.8655 6.9798 3.8993 -14.4061 8.5967 12.9151 -0.3122 -0.1844

5.2500 -1.7212 -1.0824 -3.2106 1.2500 9.3595 2.6131 1.1199

-5.9658 -4.0865 7.6451 13.0616 -1.1927 1.1782 -1.0733 -0.5631

-1.2074 -5.7729 -2.0858 -1.9347 1.6173 2.6671 -0.4645 0.6144

0.6362 -1.4059 -0.7191 1.6339 -0.1438 0.2755 -0.0268 -0.2255

8 : 8

Table 3.6 gives the DCT values corresponding to the pixel values from Table 3.5.
Notice that some of the values are negative. We have said that it is possible to express a

digital image as a sum of discretized sinusoidal functions, but sometimes a term in the sum
must be negative. You can picture adding a negative amount of a frequency component as
adding the inverted waveform.

Step 3. Quantize the frequency values.

Motivation: Quantization involves dividing each frequency coefficient by an integer
and rounding off. The coefficients for high-frequency components are typically small, so
they often round down to 0—which means, in effect, that they are thrown away.

Details: Not every value in the matrix needs to be divided by the same integer. The
amount of error introduced by the rounding is proportional to the size of the integer by
which a frequency coefficient is divided. It is preferable to divide the high-frequency coef-
ficients by larger integers, since the human eye is less sensitive to high-frequency compo-
nents in the image. Because there is not a constant integer by which all frequency coeffi-
cients are divided, a quantization table must be stored with the compressed image. We use
the divisors given in Table 3.7 and the results in Table 3.8.
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Typically in JPEG compression, there will be a lot of zeros at the end of the matrix.
Rounding off after dividing by an integer has effectively thrown away many high-

frequency components. Then the strings of zeros make a good compression rate possible
when run-length encoding is applied. Rounding during quantization makes JPEG a lossy
compression method, but, depending on the compression rate chosen, the information that
is lost usually does not unduly compromise the quality of the image.

Step 4. Apply DPCM to the block.

Motivation: DPCM is the abbreviation for differential pulse code modulation. In this
context, DCPM is simply storing the difference between the first value in the previous

block and the first value in the current block. Since the difference is generally
smaller than the actual value, this step adds to the compression.

Details: DPCM is a compression technique that works by recording the difference be-
tween consecutive data values rather than the actual values. DPCM is effective in cases
where consecutive values don’t change very much because fewer bits are needed to record
the change than the value itself. DPCM can be applied in more complex ways in other
compression algorithms for digital sound and image (e.g., see Chapter 5), but in JPEG
compression the application is simple: The upper leftmost value in an block—
called the DC component—is stored as the difference from the DC component in the pre-
vious block. The abbreviation DC is borrowed from electrical engineering, where it refers

8 * 8

8 * 8

TABLE 3.8 Quantized DCT Values

73 -4 10 3 4 0 -1 0

11 2 -4 -2 1 -1 0 0

4 2 -1 -1 -4 0 0 0

-1 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

TABLE 3.7 Quantization Table

8 6 6 7 6 5 8 7

7 7 9 9 8 10 12 20

13 12 11 11 12 25 18 19

15 20 29 26 31 30 29 26

28 28 32 36 46 39 32 34

44 35 28 28 40 55 41 44

48 49 52 52 52 31 39 57

61 56 50 60 46 51 52 50
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73 –4 10 3 4 0 –1 0

11 2 –4 –2 1 –1 0 0

4 2 –1 –1 –4 0 0 0

–1 0 0 –1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 3.50 Quantized DCT values
rearranged from low- to high-frequency
components

to direct current. The DC component is proportional to the average amplitude for all val-
ues in an block.

We are considering only one block in our example, so we’ll omit the DPCM step.

Step 5. Arrange the values in a zigzag order and do run-length encoding.

Motivation: The zigzag reordering sorts the values from low-frequency to high-
frequency components. The high-frequency coefficients are grouped together at the end. 
If many of them round to zero after quantization, run-length encoding is even more 
effective.

Details: In Figure 2.25, we show the basis functions corresponding to each position in
the block. If you examine this picture, you’ll notice that the frequencies increase
from left to right in the horizontal direction and from top to bottom in the vertical direc-
tion. Thus, if we want to order the coefficients in order of increasing frequency, a good
way to do this is the zigzag order pictured in Figure 3.50. The order of quantized values is
now 73, -4, 11, 4, 2, 10, 3, -4, 2, -1, 0, 0, -1, -2, 4, 0, 1, -1, 0, 0, 0, 0, 0, 0, -1, -4, -1,
-1, and 36 zeros. Reordering the coefficients in this way will increase the likelihood that
you’ll have strings of zeros, and this will increase the compression rate for the digital
image.

8 * 8

8 * 8

Chapter 1 showed a simple way to do run-length encoding. An alternative method can
be done using pairs of the form (skip, value) where skip is the number of zeros in a row and
value is the first nonzero value after the string of zeros. A (0, 0) indicates that there are 
no more nonzero values in the block. The run-length encoding of our example would be as
follows:

(0, 73), (0, -4), (0, 11), (0, 4), (0, 2), (0, 10), (0, 3), (0, -4), (0, 2), (0, -1), (2, -1),
(0, -2), (0, 4), (1, 1), (0, -1), (6, -1), (0, -4), (0, -1), (0, -1), (0, 0)
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Step 6. Do entropy encoding.

Motivation: Additional compression can be achieved with some kind of entropy
encoding.

Details: Entropy encoding is a compression strategy whereby the length of the code for
a symbol is proportional to the probability that the symbol will appear in the file. Both
Huffman encoding and arithmetic encoding take this approach. See Chapter 1 and the sec-
tion on Huffman encoding in this chapter for a detailed description.

After these steps have been performed, the compressed file is put into a standardized
format that can be recognized by the decompressor. A header contains global informa-
tion such as the type of file, the width and height, one or more quantization tables, 
Huffman code tables, and an indication of any pixel-padding necessary to create properly
sized coding units. The compressed image is divided into minimum coding units
(MCUs). When YCbCr color model is used, an MCU consists of a macroblock
of pixels that is divided into four blocks of Y fields and one for each of the
Cb and Cr fields.

An alternative JPEG compression method is called JPEG2000, noted for its high com-
pression rate and good quality, without some of the blocky artifacts of standard JPEG. This
method represents digital image data as wavelets as an alternative to the DCT. Some digi-
tal imaging application programs accommodate JPEG2000, at least as a plugin, but it can-
not become the new standard until web browsers and digital cameras support it more
widely.

8 * 88 * 8
16 * 16

184 Chapter 3 Digital Image Processing

EXERCISES AND PROGRAMS
1. Indexed color algorithms, programming exercise, online

2. Octree algorithm for indexed color interactive tutorial, worksheet, and programming
exercise, online

3. Dithering interactive tutorial, worksheet, and programming exercise, online

4. Blending modes, programming exercise

5. Histogram interactive tutorial and worksheet, online

6. Curves interactive tutorial and worksheet, online

7. Convolutions interactive tutorial and worksheet, online

8. Interpolation for resampling worksheet, online

9. LZW compression interactive tutorial, worksheet, and programming exercise, 
online

10. Huffman encoding interactive tutorial, worksheet, and programming exercise, 
online

11. JPEG compression interactive tutorial and worksheet, online
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APPLICATIONS
1. Examine the specifications of your digital camera (or the one you would like to have).

Is it an SLR camera? In what file format does it save images? Does it have a RAW for-
mat? Does the camera allow you to do white balancing? Does it have a software
image sharpening feature? If so, is there any indication of the algorithm it uses? Does
have a histogram feature?

2. Examine the specifications of your scanner (or the one you would like to have). How
many physical sensors does it have? What is its advertised maximum resolution? Are
any of the pixels generated through interpolation?

3. Take a photograph with a digital camera. Transport the image to your computer and
open it with an image processing program. Let’s say that the image is saved by your
camera as a JPEG file. Use your image processing program to save the image in dif-
ferent file types. First, save it as a TIFF file. Are you given the option of compressing
the file? Describe this. Now save it as a BMP. Are you given the option of compress-
ing the file? Describe this. Now save it as a GIF file. What options are you given when
you save the file as GIF? How about PNG?

4. Find a poem or short story that you would like to illustrate with a digital image (or
find some other motivation for taking an interesting digital photograph). Plan to
create a web-based and a printable version of this photograph. Plan your project be-
fore you begin, thinking about the aspect ratio you want for the photograph, the
pixel dimensions for the original photograph, the file type you want to work with,
the point at which you should crop each image, the final pixel dimensions and res-
olution, and so forth. Experiment with the features of your image processing pro-
gram to make refinements on the image and produce special effects. Keep notes on
your work, and when you’re done, describe your process and the reasons for your
decisions. Include a list of questions about features that you would like to use but
couldn’t figure out.

Examine the features of your digital image processing program, vector graphic 
(i.e., draw), and/or paint programs and try the exercises below with features that
are available.

5. What image file types are supported by your image processing software? What file
types are supported by your vector graphics program?

6. Take a photograph with a digital camera. Transport the image to your computer and
open it with an image processing program. What file type is it, as created by the cam-
era? Let’s say it’s JPEG (common for many digital cameras). Change the image to in-
dexed color. Then see if your image processing program will show you the color
palette. (There may be a menu selection for color palette or color table.) Reduce the
color palette to just eight colors if you can. Do this without dithering. Then select the
dithering option. Describe the difference in the original, the reduced-color without
dithering, and the reduced-color with dithering versions. Are different dithering algo-
rithms offered? If so, what are they?

7. Look at the filters that are offered in your image processing program, relating the
numbers in the convolution mask to the effect they create. If there is a “custom filter”
feature, try designing your own custom filter. Explain the numbers you put in the con-
volution mask, and describe what effect they create.
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8. a. If you have access to Adobe Illustrator, create a very simple drawing—for exam-
ple, a single line. Save the image as an AI file. Then try to open the file with a text
editor to see if you can read the file as text. Try to decipher what you see.

b. Create a simple EPS file with whatever software you have available that supports
this file type. See if you can read if as a text file. Try to find an example of a CGM
file that can be read as text.

9. With an image processing or paint program, create an image that is just a blue circle
on a white background. Make sure the edge of the circle is anti-aliased. Then make
the background transparent. Save the image as a GIF file. Then insert the GIF file into
another image that has a different-colored background. What is the undesirable effect
that results from the anti-aliasing? What can you learn from this?

Additional exercises or applications may be found at the book or author’s websites.
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