M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 58 j\%

"||\ |
|||| |I| .ll L "‘[l. I|||| I|H.| I|||III
|

M02_BURG5802_01_SE_C02.QXD 7/2/08 12:04 PM Page 59 $

CHAPTER

Digital Image
Representation

INTRODUCTION 60 2.6.3 CMY Color Model 90
2.6.4 HSV and HLS Color Models 91

BITMAPS 61 2.6.5 Luminance and Chrominance

2.2.1 Digitization 61 Color Models 94

2.2.2 Pixel Dimensions, Resolution, 26.6 CIE XYZ and Color Gamuts 95
and Image Size 62 2.6.7 CIE L¥*a*b*, CIE L*U*V*, and

FREQUENCY IN DIGITAL IMAGES 65 Perceptual Uniformity 102

2.6.8 Color Management Systems 103
THE DISCRETE COSINE

TRANSFORM 68 VECTOR GRAPHICS 105

2.7.1 Geometric Objects in Vector
ALIASING 78 Graphics 105
2.5.1 Blurriness and Blockiness 78 2.7.2 Specifying Curves with Polynomials
2.5.2 Moiré Patterns 78 and Parametric Equations 105
2.5.3 Jagged Edges 83 2.7.3 Bézier Curves 108
COLOR 87 ALGORITHMIC ART AND PROCEDURAL
2.6.1 Color Perception and MODELING 113

Representation 87
2.6.2 RGB Color Model 88

Exercises 118 Applications 120 References 121

S

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 60 j\%

60

CHAPTER
Beauty in art has the same base as truth in

philosophy. What is the truth? The conformity
of our judgements with that of others. What is
a beautiful imitation? The conformity of the
image with the thing. —Denis Diderot

OBJECTIVES FOR CHAPTER 2

e Understand the difference between bitmap and vector graphic representations of
image data.

¢ Understand the difference between representing image data in the spatial versus
the frequency domain, and be able to visualize image data as they are represented
graphically in each domain.

® Be able to transform image data between the spatial and frequency domains by
means of the discrete cosine transform.

* Know how base frequencies of the discrete cosine transform are represented as

sinusoidal waves and visualized as changing grayscale or color values.

Apply the Nyquist theorem to an understanding of aliasing and moiré patterns.

Understand an example demosaicing algorithm for color aliasing.

Understand an example anti-aliasing algorithm.

Understand color models, be able to visualize the important models graphically,

and be able to transform from one model to another as needed.

e Understand how parametric curves are created in vector graphics, and be able to
apply the equations that define them.

¢ Understand algorithms for producing fractal images.

2.1 INTRODUCTION

Digital images are created by three basic methods: bitmapping, vector graphics, and
procedural modeling. Bitmap images (also called pixmaps or raster graphics) are created
with a pixel-by-pixel specification of points of color. Bitmaps are commonly created by
digital cameras, scanners, paint programs like Corel Paint Shop Pro, and image processing
programs like Adobe Photoshop. Vector graphic images—created in programs such as
Adobe Illustrator and Corel Draw—use object specifications and mathematical equations
to describe shapes to which colors are applied. A third way to create digital images is by
means of procedural modeling—also called algorithmic art because of its aesthetic
appeal—where a computer program uses some combination of mathematics, logic, control
structures, and recursion to determine the color of pixels and thereby the content of the
overall picture. Fractals and Fibonacci spirals are examples of algorithmic art.

Bitmaps are appropriate for photographic images, where colors change subtly and fre-
quently in small gradations. Vector graphic images are appropriate for cleanly delineated
shapes and colors, like cartoon or poster pictures. Procedurally modeled images are algo-
rithmically interesting in the way they generate complex patterns, shapes, and colors in
nonintuitive ways. All three methods of digital image creation will be discussed in this
chapter, with the emphasis on how pixels, colors, and shapes are represented. Techniques
for manipulating and compressing digital images are discussed in Chapter 3.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 61 j\%

2.2 Bitmaps 61
2.2 BITMAPS

2.2.1 Digitization

A bitmap is two-dimensional array of pixels describing a digital [\
image. Each pixel, short for picture element, is a number represent- ASIDE: A bitmap is a pixel-by-pixel specifi-
ing the color at position (7, ¢) in the bitmap, where r is the row and cation of points of color in an image file. The

¢ is the column prefix bit seems to imply that each pixel is rep-

Th h . bi One is th h resented in only one bit and thus could have
ere are three main ways to create a bitmap. One 1S throug only two possible values, 0 or 1, usually corre-

software, by means of a paint program. With such a program, you sponding to black and white (though it could be
could paint your picture one pixel at a time, choosing a color for a any two colors). It seems that the word pixmap,
pixel, then clicking on that pixel to apply the color. More likely, you short for pixel map, would be more descriptive,

but bitmap is the commonly used term even
when referring to images that use more than one
bit per pixel.

would drag the mouse to paint whole areas with brush strokes, a less
tedious process. In this way, you could create your own artwork—
whatever picture you hold in your imagination—as a bitmap image.

More commonly, however, bitmap images are reproductions of
scenes and objects we perceive in the world around us. One way to create a digital image
from real world objects or scenes is to take a snapshot with a traditional analog camera,
have the film developed, and then scan the photograph with a digital scanner—creating a
bitmap image that can be stored on your computer.

A third and more direct route is to shoot the image with a digital camera and transfer
the bitmap to your computer. Digital cameras can have various kinds of memory cards—
sometimes called flash memory—on which the digital images are stored. You can transfer
the image to your computer either by making a physical connection (e.g., USB) between
the camera and the computer or by inserting the camera’s memory card into a slot on your
computer, and then downloading the image file. Our emphasis in this book will be on
bitmap images created from digital photography.

Digital cameras use the same digitization process discussed in Chapter 1. This digitiza-
tion process always reduces to two main steps: sampling and quantization. Sampling rate
for digital cameras is a matter of how many points of color are sampled and recorded in
each dimension of the image. You generally have some choices in this regard. For example,
a digital camera might allow you to choose from 1600 X 1200, 1280 X 960, 1024 X 768,
and 640 X 480. Some cameras offer no choice.

In digital cameras, quantization is a matter of the color model used and the correspon-
ding bit depth. We will look at color models more closely later in this chapter. Suffice it to
say for now that digital cameras generally use RGB color, which saves each pixel in three
bytes, one for each of the color channels: red, green, and blue. (A higher bit depth is possi-
ble in RGB, but three bytes per pixel is common.) Since three bytes is 24 bits, this makes
it possible for 224 = 16,777,216 colors to be represented.

Both sampling and quantization can introduce error in the sense that the image captured
does not represent, with perfect fidelity, the original scene or objects that were pho-
tographed. If you don’t take enough samples over the area being captured, the image will
lack clarity. The larger the area represented by a pixel, the blurrier the picture because sub-
tle transitions from one color to the next cannot be captured.

We illustrate this with the figures below. Imagine that you are looking at a natural scene
like the one pictured in Figure 2.1. Suppose that you divide the image into 15 rows and
20 columns. This gives you 15 X 20 rectangular sample areas. You (a hypothetical camera)

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 62 $

62 Chapter 2 Digital Image Representation

Figure 2.1 Digital image

ﬁ

Figure 2.2 Image, undersampled Figure 2.3 Image, reduced bit
depth

sample the image once per rectangle, using as your sample value the average color in each
square. If you then create the image using the sample values, the image (Figure 2.2) obvi-
ously lacks detail. It is blocky and unclear.

A low bit depth, on the other hand, can result in patchiness of color. The bit depth used
by digital cameras is excellent for color detail. However, after taking a picture and loading
it onto your computer, you can work with it in an image processing program and from there
reduce its bit depth. (You might do this to reduce the file size.) Consider this exaggerated
example, to make the point. If you reduce the number of colors in the boat picture from a
maximum of 16,777,216 to a maximum of 12, you get the image in Figure 2.3. Whole areas
of color have become a single color, as you can see in the clouds. This is the effect of quan-
tization error on a digital image.

‘Worksheet:

2.2.2 Pixel Dimensions, Resolution, and Image Size Working with

Digital Images

We defined pixel in the context of a bitmap, but it has another meaning in the context of a
computer display—where pixel is defined as a physical object a point of light on the screen.
Sometimes the terms logical pixel and physical pixel are used to distinguish between the
two usages. When you display a bitmap image on your computer, the logical pixel—that is,
the number representing a color and stored for a given position in the image file—is
mapped to a physical pixel on the computer screen.

For an image file, pixel dimensions is defined as the number of pixels horizontally (i.e.,
width, w) and vertically (i.e., height, i) denoted w X h. For example, your digital camera
might take digital images with pixel dimensions of 1600 X 1200. Similarly, your computer
screen has a fixed maximum pixel dimensions—e.g., 1024 X 768 or 1400 X 1050.

o

WorkingWithDigitalImages.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 63 j\%

2.2 Bitmaps 63

Digital cameras are advertised as offering a certain number of megapixels. The
megapixel value is derived from the maximum pixel dimensions allowable for pictures
taken with the camera. For example, suppose the largest picture you can take, in pixel
dimensions, for a certain camera is 2048 X 1536. That’s a total of 3,145,728 pixels. That
makes this camera a 3 megapixel camera (approximately). (Be careful. Camera makers
sometimes exaggerate their camera’s megapixel values by including such things as “digital
zoom,” a software method for increasing the number of pixels without really improving the
clarity.)

Resolution is defined as the number of pixels in an image file
per unit of spatial measure. For example, resolution can be meas- GSIDE: Unfortunately, not everyone makesa\
ured in pixels per inch, abbreviated ppi. It is assumed that the distinction between pixel dimensions and reso-
same number of pixels are used in the horizontal and vertical i, e tsior el o Eeimely b3 i

. used for both. For example, your computer dis-
directions, so a 200 ppi image file will print out using 200 pixels v e (Rl e e | (irdlon

to determine the colors for each inch in both the horizontal and of an image may be called their resolution
vertical directions. (with no implication of “per inch”). The confu-
Resolution of a printer is a matter of how many dots of color it sion goes even further. Resolution is sometimes

used to refer to bit depth and is thus related to
the number of colors that can be represented in
an image file. And the documentation for some

can print over an area. A common measurement is dofs per inch
(DPI). For example, an inkjet printer might be able to print a maxi-

mum of 1440 DPI. The printer and its software map the pixels in an cameras uses the term image size where we
image file to the dots of color printed. There may be more or fewer would say pixel dimensions. Be alert to these
pixels per inch than dots printed. You should take a printer’s resolu- differences in usage. It is the concepts that are

tion into consideration when you create an image to be printed. onmm'
There’s no point to having more resolution than the printer can
accommodate.

Image size is defined as the physical dimensions of an image when it is printed out or
displayed on a computer, e.g., in inches (abbreviated ") or centimeters. By this definition,
image size is a function of the pixel dimensions and resolution, as follows:

% KEY EQUATION

For an image with resolution r and pixel dimensions w X h where w is the
width and £ is the height, the printed image size a X b is given by

a=w/r
and
b=h/r

For example, if you have an image that is 1600 X 1200 and you choose to print it out at
200 ppi, it will be 8” X 6”.

You can also speak of the image size as the image appears on a computer display. For an
image with pixel dimensions w X h and resolution r, the displayed image size is, as be-
fore, w/r X h/r. However, in this case r is the display screen’s resolution. For example, if
your computer display screen has pixel dimensions of 1400 X 1050 and it is 12" X 9",
then the display has a resolution of about 117 ppi. Thus, a 640 X 480 image, when shown
at 100% magnification, will be about 5" X 4", This is because each logical pixel is dis-
played by one physical pixel on the screen.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 64 j\%

64 Chapter 2 Digital Image Representation

Supplement on
pixel dimensions,
resolution, and
image size:

hands-on exercise

% KEY EQUATION

For an image with pixel dimensions w X h where w is the width and 7 is the
height displayed on a computer display with resolution r at 100% magnification, the dis-
played image size a X b is given by

a=w/r
and

b = h/r
(It is assumed that the display resolution is given in pixels per inch or centimeters per
inch.)

The original pixel dimensions of the image file depend on how you created the image.
If the image originated as a photograph, its pixel dimensions may have been constrained
by the allowable settings in your digital camera or scanner that captured it. The greater
the pixel dimensions of the image, the more faithful the image will be to the scene captured.
A 300 X 400 image will not be as crisp and detailed as a 900 X 1200 image of the same
subject.

You can see the results of pixel dimensions in two ways. First, with more pixels to work
with, you can make a larger print and still have sufficient resolution for the printed copy.
Usually, you’ll want your image to be printed at a resolution between 100 and 300 ppi, de-
pending on the type of printer you use. (Check the specifications of your printer to see what
is recommended.) The printed size is w/r X h/r, so the bigger the r, the smaller the print.
For example, if you print your 300 X 400 image out at 100 ppi, it will be 3” X 4”.1If you
print it out at 200 ppi, it will be 15" X 2.

The second way you see the result of pixel dimensions is in the size of the image on your
computer display. Since logical pixels are mapped to physical pixels, the more pixels in the
image, the larger the image on the display. A 300 X 400 image will be 1/3 the size of a
900 X 1200 on the display in each dimension. It’s true that you can ask the computer to
magnify the image for you, but this won’t create detail that wasn’t captured in the original
photograph. If you magnify the 300 X 400 image by 300% and compare it to an identical
image that was originally taken with pixel dimensions of 900 X 1200, the magnified
image won’t look as clear. It will have jagged edges.

Thus, when you have a choice of the pixel dimensions of your image, you need to con-
sider how you’ll be using the image. Are you going to be viewing it from a computer or
printing it out? How big do you want it to be, either in print size or on the computer screen?
If you’re printing it out, what resolution do you want to use for the print? With the answers
to these questions in mind, you can choose appropriate pixel based on the choices offered
by your camera and the amount of memory you have for storing the image.

There are times when you can’t get exactly the pixel dimensions you want. Maybe
your camera or scanner has limitations, maybe you didn’t take the picture yourself, or
maybe you want to crop the picture to cut out just the portion of interest. (Cropping, in
an image processing program, is simply cutting off part of the picture, discarding the un-
wanted pixels.) Changing the number of pixels in an image is called resampling. You can
increase the pixel dimensions by wupsampling or decrease the dimensions by
downsampling, and you may have valid reasons for doing either. But keep in mind that

o

PixelDimensionsResolutionAndImageSize.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 65 j\%

2.3 Frequency in Digital Images 65

resampling always involves some kind of interpolation, averaging, or estimation, and
thus it cannot improve the quality of an image in the sense of making it any more faithful
to the picture being represented. The additional pixels created by upsampling are just
“estimates” of what the original pixel values would have been if you had originally cap-
tured the image at higher pixel dimensions, and pixel values you get from downsampling
are just averages of the information you originally captured. In Chapter 3, we’ll look
more closely at how resampling is done.

The lack of clarity that results from a sampling rate that is too low for the detail of the
image is an example of aliasing. You may recall from Chapter 1 that aliasing is a phenom-
enon where one thing “masquerades” as another. In the case of digital imaging, if the sam-
pling rate is too low, then the image takes on a shape or pattern different what was actually
being photographed—blockiness, blurriness, jagged edges, or moiré patterns (which, in-
formally defined, are patterns that are created from two other patterns overlapping each
other at an angle). Similarly, a digitized sound might adopt false frequencies heard as false
pitches, or digitized video might demonstrate motion not true to the original, like spokes
in a bicycle wheel rotating backwards. As explained in Chapter 1, the Nyquist theorem
tells us that aliasing results when the sampling rate is not at least twice the frequency of
the highest frequency component of the image (or sound or video) being digitized. To un-
derstand this theorem, we need to be able to think of digital images in terms of frequen-
cies, which may seem a little counterintuitive. It isn’t hard to understand frequency with
regard to sound, since we’re accustomed to thinking of sound as a wave and relating the
frequency of the sound wave to the pitch of the sound. But what is frequency in the realm
of digital images?

2.3 FREQUENCY IN DIGITAL IMAGES

Chapter 1 gives a general discussion of how data can be represented by functions in a vari-
ety of domains, and how the representation can be translated from one domain to another
without loss of information. Let’s look at this more closely in the context of digital images.
Our goal is understand how a digital image can be translated from the spatial domain to the
frequency domain, because once we see how this is done, we can understand what the
Nyquist theorem means when applied to digital images.

To begin, let’s think of an image as a function that can be represented in a graph. It’s eas-
ier to visualize this with a function in one variable, so let’s consider just one line of color
across an image as a function y = f(x), where x is the position of one point of color. Func-
tion f is a function over the spatial domain in that the x values correspond to points in
space. y is the color value at position x.

Figure 2.4 shows an image of grayscale values that vary from lighter gray (a grayscale
value of 168) to darker gray (a grayscale value of 85) and back again. (All examples in this
section will be based on grayscale images. The observations are easily generalized to
RGB images, where each of the red, green, and blue channels has values between 0 and
255. Each channel can be individually translated from the spatial to the frequency do-
main.) Grayscale values for one horizontal line across the image are graphed as the func-
tion y = f(x) in Figure 2.5, assuming that the pattern repeats. Notice that the graph is
sinusoidal—the shape of a sine or cosine wave. Because this is such a simple example, it
is easy to see the image in terms of frequency. An important concept to remember is that
in the realm of digital imaging, frequency refers to the rate at which color values change.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 66 $

66 Chapter 2 Digital Image Representation

Q

=

<

>

=2

B

ES

S

@)

Pixel position

Figure 2.4 An image in Figure 2.5 Graph of function y = f(x)
which color varies contin- for one line of color across the image. fis
uously from light gray to assumed to be continuous and periodic

dark gray and back again

This image changes at a perfectly regular and continuous rate, resulting in a sinusoidal
shape to the graph.

So far we’ve been treating the color values in an image as a continuous function, but to
work with these values in a digital image we need to discretize them. Figure 2.6 is a dis-
cretized version of Figure 2.4 in that it has discrete bands of colors and the change from
one color to the next is abrupt. Assume that this is a 8 X 8 pixel image, and imagine ex-
tending the image horizontally such that the eight-pixel pattern is repeated four times.
Then consider just one row of pixels across the image. Figure 2.7 shows how such an
image would be graphed in the spatial domain. We can still consider this a waveform,
though it is not smooth like a sine or cosine wave. All bitmap images, even those with ir-
regular patterns of pixel values like the picture of the sparrow shown in Figure 2.8, can be
viewed as waveforms. Figure 2.9 shows the graph of one row of pixels taken from the
sparrow picture.

Grayscale value

80 | | | | | |
0 5 10 15 20 25 30 35
Pixel position
Figure 2.6 Discretized Figure 2.7 Graph of one row of pixels over the spatial
version of gradient domain (Assume the pattern shown in Figure 2.6 is
repeated four times in this graph, making a 32 pixel
width.)

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 67 $

2.3 Frequency in Digital Images 67

250 T T T T T T T T T

200

150

100

Grayscale value

50

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

e N, e Pixel position
Figure 2.8 A grayscale Figure 2.9 Graph of one row of sparrow bitmap over
bitmap image the spatial domain

Extending these observations to two-dimensional images is straightforward. If we as-
sume that the picture in Figure 2.6 is an 8 X 8 pixel bitmap, then the corresponding graph
over the spatial domain (Figure 2.10) is a three-dimensional graph where the third dimen-
sion is the pixel value at each (x, y) position in the image. The graph for the picture of the
sparrow is shown in Figure 2.11. When the two-dimensional bitmap images are graphed,
you can imagine that each row (and each column) is a complex waveform.

200
150
100

50

Grayscale value

Figure 2.10 Graph of Figure 2.6, assumed to be an 8 X 8 bitmap
image

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 68 $

68 Chapter 2 Digital Image Representation

300

o
o
(=)

—_
o
(=)

Grayscale value

oo

100

Figure 2.11 Graph of two-dimensional bitmap of sparrow

2.4 THE DISCRETE COSINE TRANSFORM

All of the graphs we’ve looked at so far have been represented in the
spatial domain. To separate out individual frequency components,
however, we need to translate the image to the frequency domain.

ASIDE: Fourier theory was developed by
mathematician and physical scientist Jean

Baptiste Joseph Fourier (1768-1830) and is Fourier theory tells us that any complex periodic waveform can be
applicable to a wide range of problems in equated to an infinite sum of simple sinusoidal waves of varying
engineering and digital signal processing. frequencies and amplitudes. To understand what this means, think

first about just one horizontal line of image data, picturing it as a
complex waveform. The fact that this waveform can be expressed as
an infinite sum of simple sinusoidals is expressed in the equation
below.

flx) = E a, cos(nwx)
n=0

f(x) is a continuous periodic function over the spatial domain whose graph takes the form
of a complex waveform. The equation says that it is equal to an infinite sum of cosine
waves that make up its frequency components. Our convention will be to use w to repre-
sent angular frequency, where w = 27 f and fis the fundamental frequency of the wave.
As n varies, we move through these frequency components, from the fundamental fre-
quency on through multiples of it. a,, is the amplitude for the nth cosine frequency com-
ponent.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 69 $

2.4 The Discrete Cosine Transform 69

NANNNLL
VAVAVAVAVAY

AAAAANN L
AAATAATAY

NAANANNAN -
VUVVVVVY

(\ I\vl\ 1\ /\ /\ /\V/\

UVWVVM
Figure 2.12 Adding frequency
components

We already showed you a simple example of this in Chapter 1. Figure 2.12 shows a
sound wave that is the sum of three simple sine waves. (All other frequency components
other than those shown have amplitude O at all points.)

Let’s look at how this translates to the discrete world of digital images. We continue to
restrict our discussion to the one-dimensional case—considering a single line of pixels
across a digital image, like the one pictured in Figure 2.13. Any row of M pixels can be rep-
resented as a sum of the M weighted cosine functions evaluated at discrete points. This is
expressed in the following equation:

M-1
fr) = Lgb\/\i/cl;—/([mF(u)cosCzr;;)MT) for0=r <M

2
where C(u) = Tifu = 0 otherwise C(u) = 1

Equation 2.1

You can understand Equation 2.1 in this way. f(r) is a one-dimensional array of M pixel
values. For Figure 2.13, these values would be [0, 0, 0, 153, 255, 255, 220, 220]. F(u) is

|___BEEEN

Figure 2.13 A one-dimensional image of eight pixels (enlarged). Pixel outlines are not
part of image.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 70 $

70 Chapter 2 Digital Image Representation

Qr + 1)u77) . .

———— | is called a basis
2M

Sfunction. You can also think of each function as a frequency component. The coefficients in

F(u) tell you how much each frequency component is weighted in the sum that produces

the pixel values. You can think of this as “how much” each frequency component con-

tributes to the image.

For M = 8, the basis functions are those given in Figures 2.14 through 2.21. They are
shown as cosine functions (made continuous) and then as 8 X 8 bitmap images whose color
values change in accordance with the given basis function. As the values of the cosine func-
tion decreases, the pixels get darker because 1 represents white and —1 represents black.

one-dimensional array of coefficients. Each function cos(

1+

Qr + 1)0m
cos 16 0 2 4 6

= cos(0) Figure 2.14 Basis Function 0

((2}’ + 1)7T> | | | | _
CoS\ —————

16 0 2 4 6

1k

((Zr + 1)277) , , | | _
cos\ —————

16 0 2 4 6
Figure 2.16 Basis Function 2

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 71 $

1 -
((2r + 1)3w> 1 \A
Cos\ ————

16

2.4 The Discrete Cosine Transform 71

0 2 4 6
Figure 2.17 Basis Function 3

T T T T
1
1 \/\v/
| | | |
0 2 4 6
Figure 2.18 Basis Function 4

((2r + 1)47T>
cos 6

wecoeny LT T T .

16 0 2 4 6
Figure 2.19 Basis Function 5

16 0 2 4 6
Figure 2.20 Basis Function 6

ooy LT T T -

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 72 (F

72 Chapter 2 Digital Image Representation

COS(

Supplements on
discrete cosine
transform:

interactive tutorial

programming
exercise

L ,‘\ S
\
oy

worksheet

2]

mathematical
modeling

1 -

0 2 4 6
Figure 2.21 Basis Function 7

16

<2+1>77T>1 H B E B

The pictures of grayscale bars correspond to the sinusoidal graphs as follows: Evaluate the
basis function at » = i for 0 = r = 7 from left to right. Each of the resulting values corre-
sponds to a pixel in the line of pixels to the right of the basis function, where the grayscale
values are scaled in the range of —1 (black) to 1 (white). Thus, frequency component
2r + Dm

cos<(]6)> (basis function 1) corresponds to a sequence of eight pixels that go from
white to black.

Equation 2.1 states only that the coefficients F(u) exist, but it doesn’t tell you how to
compute them. This is where the discrete cosine transform (DCT) comes in. In the one-
dimensional case, the discrete cosine transform is stated as follows:

~ MIN2C () <(2r + l)un‘)
F(u) = E)W ferycos| —— = | for 0

2
where C(u) = Tifu = 0 otherwise C(u) = 1

Equation 2.2

Equation 2.2 tells how to transform an image from the spatial domain, which gives color or
grayscale values, to the frequency domain, which gives coefficients by which the frequency
components should be multiplied. For example, consider the row of eight pixels shown in
Figure 2.13. The corresponding grayscale values are [0, 0, 0, 153, 255, 255, 220, 220]. This
array represents the image in the spatial domain. If you compute a value F(u) for
0 =u = M — 1 using Equation 2.2, you get the array of values [389.97, —280.13,
—93.54, 83.38, 54.09, —20.51, —19.80, —16.34]. You have applied the DCT, yielding an
array that represents the pixels in the frequency domain.

What this tells you is that the line of pixels is a linear combination of frequency
components—that is, the basis functions multiplied by the coefficients in F and a constant
and added together, as follows:

for) = 389\/.]%7005(0) - \\//A%(—280.13005<W> 9354 COS(@V;MlW)

Q2r + 1)37 Qr + Ddmr Qr + D57
+ 83.38 cos T + 54.09cos| ———— | — 20.51cos{ ————

2M 2M
Q@r + Dom @r +)inw
— 19.80cos| ———— | — 1634 cos| —————
2M M

You can understand this visually through Figure 2.22.

o

DCT.htm
DCTWorksheet.pdf
DCTAlgorithm
ModelingDCT.zip

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 73 $

2.4 The Discrete Cosine Transform 73

Weighted frequency components are summed

w0*| |+

Figure 2.22 Summing frequency components

Having a negative coefficient for a frequency components amounts to adding the inverted
waveform, as shown in Figure 2.23.

As a matter of terminology, you should note that the first element F(0)—is called the DC
component. For a periodic function represented in the frequency domain, the DC component
is a scaled average value of the waveform. You can see this in the one-dimensional case.

FO) = \/T(cos(0)f(0) + cos(0)f(1) + cos(0)f(2) + cos(0)f(3) +>
M\ cos(0)f(4) + cos(0)f(5) + cos(0)f(6) + cos(0)f(7)
_ \/T<f(0) + S+ f2) + f3) +>
M\ f&) + f(5) + £(6) + f(])
All the other components (F(1) through F(M — 1)) are called AC components. The
names were derived from an analogy with electrical systems, the DC component being

Having a negative coefficient for this frequency
component

[T

Is equivalent to having a positive coefficient for
this frequency component

.

Figure 2.23 A frequency component with a
negative coefficient

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 74 $

74 Chapter 2 Digital Image Representation

comparable to direct current and the AC component being comparable to alternating
current.

We’ve been looking at the one-dimensional case to keep things simple, but to represent
images, we need two dimensions. The two-dimensional DCT is expressed as follows:

KEY EQUATION

Let f(r, s) be the pixel value at row r and column s of a bitmap. F(u, v) is the
coefficient of the frequency component at (u, v), where 0 < r,u = M — 1 and
O0=s,v=N —1.

M—-1 N—1
Fow) = ;) 25 2C(u)C(v)) COS((zr ;L Ml)uﬂ') COS((zs ;L Nl)vrr)

fr,
MN

V2
where C(6) = Tifé = (otherwise C(6) = 1

The equations above define the 2D discrete cosine transform.

Equation 2.3

(Matrices are assumed to be treated in row-major order—row by row rather than column by
column.) Equation 2.3 serves as an effective procedure for computing the coefficients of
the frequency components from a bitmap image. (Note that since C(#) and C(v) do not
- . 2Cw)C@) .
depend on the indices for the summations, you can move the factor ———— outside the

VMN

nested summation. You’ll sometimes see the equation written in this alternative form.)

You can think of the DCT in two equivalent ways. The first way is to think of the DCT
as taking a function over the spatial domain—function f(r, s)—and returning a function
over the frequency domain—function F(u, v) Equivalently, you can think of the DCT as
taking a bitmap image in the form of a matrix of color values —f (r, s) — and returning the
frequency components of the bitmap in the form of a matrix of coefficients — F(u, v). The
coefficients give the amplitudes of the frequency components.

Rather than being applied to a full M X N image, the DCT is generally applied to 8 X 8
pixel subblocks (for example, as a key step in JPEG compression), so our discussion will be
limited to images in these dimensions. Anenlarged 8 X 8 pixel image is shown in Figure 2.24,

Figure 2.24 8 X 8 bitmap image. Pixel outlines are not part of image

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 75 $

2.4 The Discrete Cosine Transform

17:-\- |8 H B Color Values for Image in Figure 2.24

255 255 255 255 255 255 159 159
255 0 0 0 255 255 159 159
255 0 0 0 255 255 255 255
255 0 0 0 255 255 255 255
255 255 255 255 255 255 100 255
255 255 255 255 255 255 100 255
255 255 255 255 255 255 100 255
255 255 255 255 255 255 100 255

178 E Amplitudes of Frequency Components
for Image in Figure 2.24

1628 —61 39 234 173 —128 171 22
—205 —163 74 222 1 74 —30 111
81 150 —95 —82 —42 —11 —6 —53
188 231 —135 —188 —53 —36 —2 —103
96 71 —42 —78 —32 2 =17 -32
25 —42 25 3 —14 27 —26 19

70 15 —6 —51 =17 7 —16 —13
94 72 —38 —87 —18 —14 —4 —40

and its corresponding bitmap values (matrix f) and amplitudes of the frequency components
computed by the DCT (matrix F') are given in Table 2.1 and Table 2.2, respectively.

The discrete cosine transform is invertible. By this we mean that given the amplitudes
of the frequency components as F, we can get color values for the bitmap image as f. This
relationship is described in the following equation:

KEY EQUATION

Let F(u, v) be the coefficient of the frequency component at (u, v). f(r, s) is
the pixel value at row r and column s of a bitmap, where 0 = r,u = M — land 0 =
s, v =N — 1.

M—-1 N—
flr,s) = Z Z \/u%v) (u, v)cos<(2r ;_Ml)uw)cos<(2s ;Nl)?m>

V2
where C(8) = Tif 6 = 0 otherwise C(6) = 1

These equations define the 2D inverse discrete cosine transform.

Equation 2.4

o

75

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 76 $

76 Chapter 2 Digital Image Representation

L1l

i

u:-
e |
- -
- —
- .
|
T
- -
-
ks -

Figure 2.25 Base frequencies for discrete cosine transform

In essence, the equation states that the bitmap is equal to a sum of M * N weighted frequency
components.

The DCT basis functions for an 8 X 8 image are pictured in Figure 2.25. Each
“block™ at position (u, v) of the matrix is in fact a graph of the function

Q2r + Dum 2s + Do . .

cos< T)cos(6) at discrete positions r = [0 7] and s = [0 7]. F (0, 0),
the DC component, is in the upper left corner. The values yielded by the function are pic-
tured as grayscale values in these positions. The thing to understand is that any 8 X 8§
pixel block of grayscale values—Ilike the one pictured in Figure 2.24—can be recast as a
sum of frequency components pictured in Figure 2.25. You just have to know “how much”
of each frequency component to add in. That is, you need to know the coefficient by which
to multiply each frequency component, precisely what the DCT gives you in F(u, v) (as
in Table 2.2). In the case of color images represented in RGB color mode, the DCT can be
done on each of the color components individually. Thus, the process is the same as what
we described for grayscale images, except that you have three 8 X 8 blocks of data on
which to do the DCT—one for red, one for green, and one for blue.

Let’s complete this explanation with one more example, this time a two-dimensional
image. Consider the top leftmost 8 X 8 pixel area of the sparrow picture in Figure
2.8. Figure 2.26 shows a close-up of this area, part of the sidewalk in the background.
Figure 2.27 shows the graph of the pixel data over the spatial domain. Figure 2.28 captures
the same information about the digital image, but represented in the frequency domain.
This graph was generated by the DCT. The DC component is the largest. It may be difficult
for you to see at this scale, but there are other nonzero frequency components—for exam-
ple, at positions (1, 1) and (1, 3) (with array indices starting at 0).

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 77 $

2.4 The Discrete Cosine Transform

Figure 2.26 Close-up of 8 X 8 pixel area (sidewalk) from sparrow picture

_— = N
wn o wn O
o o o O

Grayscale value

Figure 2.27 Graph of pixel values over the spatial domain

1500
1000
500

Amplitude of frequency
component

Figure 2.28 Graph of amplitudes over the frequency domain

o

77

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 78 $

78 Chapter 2 Digital Image Representation

Supplements on
aliasing in
sampling:

)

CJ

worksheet

2.5 ALIASING

2.5.1 Blurriness and Blockiness

The previous section showed that one way to understand frequency in the context of digi-
tal images is to think of the color values in the image bitmap as defining a surface. This sur-
face forms a two-dimensional wave. A complex waveform such as the surface shown in
Figure 2.11 can be decomposed into regular sinusoidal waves of various frequencies and
amplitudes. In reverse, these sinusoidal waves can be summed to yield the complex wave-
form. This is the context in which the Nyquist theorem can be understood. Once we have
represented a bitmap in the frequency domain, we can determine its highest frequency
component. If the sampling rate is not at least twice the frequency of the highest frequency
component, aliasing will occur.

Let’s try to get an intuitive understanding of the phenomenon of aliasing in digital im-
ages. Look again at the picture in Figure 2.1 and think of it as a real-world scene that you’re
going to photograph. Consider just the horizontal dimension of the image. Imagine that this
picture has been divided into sampling areas so that only 15 samples are taken across a
row—an unrealistically low sampling rate, but it serves to make the point. If the color
changes even one time within one of the sample areas, then the two colors in that area can-
not both be represented by the sample. This implies that the image reconstructed from the
sample will not be a perfect reproduction of the original scene, as you can see in Figure 2.2.
Mathematically speaking, the spatial frequencies of the original scene will be aliased to
lower frequencies in the digital photograph. Visually, we perceive that when all the colors
in a sampling area are averaged to one color, the reconstructed image looks blocky and the
edges of objects are jagged. This observation seems to indicate that you’d need a very high
sampling rate—that is, large pixel dimensions—to capture a real-world scene with com-
plete fidelity. Hypothetically, that’s true for most scenes. Fortunately, however, the human
eye isn’t going to notice a little loss of detail. The pixel dimensions offered by most digital
cameras these days provide more than enough detail for very crisp, clear images.

2.5.2 Moiré Patterns

Another interesting example of aliasing, called the moiré effect or moiré pattern, can occur
when there is a pattern in the image being photographed, and the sampling rate for the dig-
ital image is not high enough to capture the frequency of the pattern. If the pattern is not
sampled at a rate that is at least twice the rate of repetition of the pattern, then a different
pattern will result in the reconstructed image. In the image shown in Figure 2.29, the color
changes at a perfectly regular rate, with a pattern that repeats five times in the horizontal
direction. What would happen if we sampled this image five times, at regularly spaced

Figure 2.29 A simple image with vertical stripes

o

Aliasing.hmt
AliasingWorksheet.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 79 $

2.5 Aliasing 79

intervals? Depending on where the sampling started, the resulting image would be either
all black or all white. If we sample more than ten times, however—more than twice per
repetition of the pattern—we will be able to reconstruct the image faithfully. This is just a
simple application of the Nyquist theorem.

More visually interesting moiré effects can result when the original pattern is more com-
plex and the pattern is tilted at an angle with respect to the sampling. Imagine the image
that would result from tilting the original striped picture and then sampling in the horizon-
tal and vertical directions, as shown in Figure 2.30. The red grid shows the sampling
blocks. Assume that if more than half a sampling block is filled with black from the origi-
nal striped image, then that block becomes black. Otherwise, it is white. The pattern in the
reconstructed image is distorted in a moiré effect. Once you know what the moiré effect is,
you start seeing it all around you. You can see it any time one pattern is overlaid on
another—Ilike the shimmering effect of a sheer curtain folded back on itself, or the swirls
resulting from looking through a screen at a closely woven wicker chair.

Figure 2.30 Sampling that can result in a moir€ pattern

Moir€ patterns can result both when a digital photograph is taken and when a picture is
scanned in to create a digital image, because both these processes involve choosing a sam-
pling rate. Figure 2.31 shows a digital photograph of a computer bag where a moiré pattern
is evident, resulting from the sampling rate and original pattern being “out of sync.”

LONDON FoG*

Figure 2.31 Moiré pattern in digital
photograph

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 80 $

80 Chapter 2 Digital Image Representation

Figure 2.32 shows a close-up of the moiré pattern. Figure 2.33 shows a close-up of the pat-
tern as it should look. If you get a moiré effect when you take a digital photograph, you can
try tilting the camera at a different angle or changing the focus slightly to get rid of it. This
will change the sampling orientation or sampling precision with respect to the pattern.

Moiré patterns occur in digital photography because it is based on discrete samples. If
the samples are taken “off beat” from a detailed pattern in the subject being photographed,
an alias of the original pattern results. But this does not fully explain the source of the prob-
lem. Sometimes aliasing in digital images manifests itself as small areas of incorrect colors
or artificial auras around objects, which can be referred to as color aliasing, moiré fringes,
false coloration, or phantom colors. To understand what causes this phenomenon, you have
to know a little about how color is perceived and recorded in a digital camera.

When a photograph is taken with a traditional analog camera, film that is covered with
silver-laden crystals is exposed to light. There are three layers on photographic film, one
sensitive to red, one to green, and one to blue light (assuming the use of RGB color). At
each point across a continuous plane, all three color components are sensed simultane-
ously. The degree to which the silver atoms gather together measures the amount of light to
which the film is exposed.

We have seen that one of the primary differences between analog and digital photogra-
phy is that analog photography measures the incident light continuously across the focal
plane, while digital photography samples it only at discrete points. Another difference is
that it is more difficult for a digital camera to sense all three color components—red, green,
and blue—at each sample point. These constraints on sampling color and the use of inter-
polation to “fill in the blanks” in digital sampling can lead to color aliasing. Let’s look at
this more closely.

Many current digital cameras use charge-coupled device (CCD) technology to sense light
and thereby color. (CMOS—complementary metal-oxide semiconductor—is an alternative
technology for digital photography, but we won’t discuss that here.) A CCD consists of a
two-dimensional array of photosites. Each photosite corresponds to one sample (one pixel
in the digital image). The number of photosites determines the limits of a camera’s resolu-
tion. To sense red, green, or blue at a discrete point, the sensor at that photosite is covered
with a red, green, or blue color filter. But the question is: Should all three color components
be sensed simultaneously at each photosite, should they be sensed at different moments
when the picture is taken, or should only one color component per photosite be sensed?

There are a variety of CCD designs in current technology, each with its own advantages
and disadvantages. (1) The incident light can be divided into three beams. Three sensors
are used at each photosite, each covered with a filter that allows only red, green, or blue to
be sensed. This is an expensive solution and creates a bulkier camera. (2) The sensor can
be rotated when the picture is taken so that it takes in information about red, green, and blue
light in succession. The disadvantage of this method is that the three colors are not sensed
at precisely the same moment, so the subject being photographed needs to be still. (3) A

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 81 $

2.5 Aliasing 81

more recently developed technology (Foveon X3) uses silicon for the sensors in a method
called vertical stacking. Because different depths of silicon absorb different wavelengths of
light, all three color components can be detected at one photosite. This technology is gain-
ing popularity. (4) A less expensive method of color detection uses an array like the one
shown in Figure 2.34 to detect only one color component at each photosite. Interpolation is
then used to derive the other two color components based on information from neighboring
sites. It is the interpolation that can lead to color aliasing.

R R
B B
R R
B B

Figure 2.34 Bayer color filter array

In the 4 X 4 array shown in the figure, the letter in each block indicates which color is
to be detected at each site. The pattern shown here is called a Bayer color filter array, or
simply a Bayer filter. (It’s also possible to use a cyan-magenta-yellow combination.) You’ll
notice that there are twice as many green sensors as blue or red. This is because the human
eye is more sensitive to green and can see more fine-grained changes in green light. The
array shown in the figure is just a small portion of what would be on a CCD. Each block in
the array represents a photosite, and each photosite has a filter on it that determines which
color is sensed at that site.

The interpolation algorithm for deriving the two missing color channels at each photo-
site is called demosaicing. A variety of demosaicing algorithms have been devised. A sim-
ple nearest neighbor algorithm determines a missing color ¢ for a photosite based on the
colors of the nearest neighbors that have the color c. For the algorithm given below, assum-
ing a CCD array of dimensions m X n, the nearest neighbors of photosite (i, j) are sites
G—Lj—=D,G-Lp) G- Lj+DGj—DGj+DG+1Lj—-D,GC+1L)),
(i+1,j+ 1) where 0 =i = mand 0 = j =< n (disregarding boundary areas where
neighbors may not exist). The nearest neighbor algorithm is given as Algorithm 2.1.

ALGORITHM 2.1 BTGNS (e g-{eli¥: VR clol {RN gy

algorithm nearest_neighbor
{
for each photosite (i,j) where the photosite detects color c1 {
for each c2 e {red,green,blue} such that c2 # cl {
S = the set of nearest neighbors of site (i,j) that have color c2
set the color value for c2 at site (i,j) equal to the average of the color values of
c2 at the sites in S
}
}

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 82 $

82 Chapter 2 Digital Image Representation

R B B
B B R
R B B

(a) Determining R or B from the (b) Determining B from the center R
center G photosite entails an photosite entails an average of four
average of two neighboring sites. neighboring sites diagonal from R.

Figure 2.35 Photosite interpolation

With this algorithm, there may be either two or four neighbors involved in the averaging,
as shown in Figure 2.35a and Figure 2.35b.

This nearest neighbor algorithm can be fine-tuned to take into account the rate at which
colors are changing in either the vertical or horizontal direction, giving more weight to
small changes in color as the averaging is done. Other standard interpolation methods—
linear, cubic, cubic spline, etc.—can also be applied, and the region of nearest neighbors
can be larger than 3 X 3 or a shape other than square.

The result of the interpolation algorithm is that even though only one sensor for one
color channel is used at each photosite, the other two channels can be derived to yield full
RGB color. This method works quite well and is used in many digital cameras with CCD
sensors. However, interpolation by its nature cannot give a perfect reproduction of the
scene being photographed, and occasionally color aliasing results from the process, de-
tected as moiré patterns, streaks, or spots of color not present in the original scene. A sim-
ple example will show how this can happen. Imagine that you photograph a white line, and
that line goes precisely across the sensors in the CCD as shown in Figure 2.36. If there is
only black on either side of the line, then averaging the neighboring pixels to get the color
channels not sensed at the photosites covered by the line always gives an average of 0. That
is, no other color information is added to what is sensed at the photosites covered by the

(a) (b)

Figure 2.36 A situation that can result in color aliasing

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 83 $

2.5 Aliasing 83

line, so each photosite records whatever color is sensed there. The result is the line shown
in Figure 2.36b. Generally speaking, when a small area color can be detected by only a few
photosites, the neighboring pixels don’t provide enough information so that the true color
of this area can be determined by interpolation. This situation can produce spots, streaks,
or fringes of aliased color.

Some cameras use descreening or anti-aliasing filters over their lenses—effectively
blurring an image slightly to reduce the color aliasing or moiré effect. The filters remove
high frequency detail in the image that can lead to color aliasing, but this sacrifices a lit-
tle of the image’s clarity. Camera manufacturers make this choice in the design of their
cameras—to include the anti-aliasing filter or not—and many high quality cameras do not
have the filters because the manufacturers assume that sharp focus is more important to
most photographers when weighed against occasional instances of color aliasing or moiré
patterns.

2.5.3 Jagged Edges

You may have heard the term aliasing used to describe the jagged edges along lines or
edges that are drawn at an angle across a computer screen. This type of aliasing occurs
during rendering rather than sampling and results from the finite resolution of computer
displays. A line as an abstract geometric object is made up of points, and since there are
infinitely many points on a plane, you can think of a line as being infinitely narrow. A
line on a computer screen, on the other hand, is made up of discrete units: pixels. If we
assume these pixels are square or rectangular and lined up parallel to the sides of the dis-
play screen, then there is no way to align them perfectly when a line is drawn at an angle
on the computer screen. This situation is illustrated in Figure 2.37. We assume for
purposes of illustration that pixels are nonoverlapping rectangles or squares that cover the
display device entirely.

Supplements on
aliasing in
rendering:

Figure 2.37 Aliasing of a line that is one pixel wide

When you draw a line in a draw or a paint program using a line tool, you click on one &
endpoint and then the other, and the line is drawn between the two points. In order to draw
the line on the computer display, the pixels that are colored to form the line must be deter-
mined. This requires a line-drawing algorithm such as the one given in Algorithm 2.2.
Beginning at one of the line’s endpoints, this algorithm moves horizontally across the dis-
play device, one pixel at a time. Given column number x0, the algorithm finds the integer
y0 such that (x0, y0) is the point closest to the line. Pixel (x0, y0) is then colored. The re-
sults might look like Figure 2.37. The figure and the algorithm demonstrate how a line that
is one pixel wide would be drawn. It is not the only algorithm for the purpose, and it does
not deal with lines that are two or more pixels wide.

worksheet

o

AliasingInRendering.htm
AliasingInRenderingWorksheet.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 84 $

84 Chapter 2 Digital Image Representation

Supplements on ALGORITHM 2.2 IW-\X<lo):huz SNLe]: W01 :V:\V [[<F- YRS
aliasing in line

drawing:

algorithm draw_line
/*Input: x0, y0, x1, and y1, coordinates of the line’s endpoints (all integers) c, color

,((t ' of the line.
(@‘ Output: Line is drawn on display.*/
‘ {

pngf?mming /*Note: We include data types because they are important to understanding the
exercise algorithm’s execution. */
int dx, dy, num_steps, i
float x_increment, y_increment, X, y
dx = x1 — x0
dy =yl —y0
if (absolute_value(dx) > absolute_value(dy) then num_steps = absolute_value(dx)
else num_steps = absolute_value(dy)
x_increment = float(dx) / float (num_steps)
y_increment = float (dy) / float (num_steps)
x = x0
y=1y0
/*round(x) rounds to the closest integer.*/
draw(round(x), round(y), c)
fori = 0 to num_steps—1 {
X = X + x_increment
y =y + y_increment
draw(round(x), round(y), c)

H

interactive tutorial

To test your understanding, think about how Algorithm 2.2 would be generalized to
lines of any width. Figure 2.38 shows a line that is two pixels wide going from point (8,
1) to point (2, 15). The ideal line is drawn between the two endpoints. To render the line
in a black and white bitmap image, the line-drawing algorithm must determine which pix-
els are intersected by the two-pixel-wide area. The result is the line drawn in Figure 2.39.
Because it is easy to visualize, we use the assumption that a pixel is colored black if at
least half its area is covered by the two-pixel line. Other line-drawing algorithms may op-
erate differently.

e < 1]
=
1
LA 1]
L1
A1 |]
[ee] T - [ee]
[
1 7 15 1 7 15
Figure 2.38 Drawing a line Figure 2.39 Line two pixels
two pixels wide wide, aliased

o

LineDrawingAlgorithm.pdf
LineDrawing.htm

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 85 j\%

2.5 Aliasing 85

Anti-aliasing is a technique for reducing the jaggedness of lines or edges caused by
aliasing. The idea is to color a pixel with a shade of its designated color in proportion to the
amount of the pixel that is covered by the line or edge. In this example, consider the two-
pixel-wide line shown in Figure 2.38. If a pixel is completely covered by the line, it is col-
ored black. If it is half covered, it is colored a shade of gray halfway between black and
white, and so forth. Using gradations of colors softens the edges. The edges are not sharp,
as they would be ideally, but making the lines and edges perfectly straight is impossible due
to the finite resolution of the image and the display device. Anti-aliasing helps to compen-
sate for the jagged effect that results from imperfect resolution. The anti-aliased version of
our example line is shown in Figure 2.40, enlarged. At normal scale, this line looks
smoother than the aliased version.

Bitmaps are just one way to represent digital images. Another way is by means of vec-
tor graphics. Rather than storing an image bit-by-bit, a vector graphic file stores a descrip-
tion of the geometric shapes and colors in an image. Thus, a line can be described by means
of its endpoints, a square by the length of a side and a registration point, a circle by its ra-
dius and center point, etc. Vector graphics suffer less from aliasing problems than do
bitmap images in that vector graphics images can be resized without loss of resolution.
Let’s look at the difference.

When you draw a line with a line tool in a bitmap image, the pixel values are computed
for the line and stored in the image pixel by pixel. Say that the image is later enlarged by
increasing the number of pixels. This process is called upsampling. A simple algorithm for
upsampling a bitmap image, making it twice as big, is to make four pixels out of each one,
duplicating the color of the original pixel. Obviously, such an algorithm will accentuate any
aliasing from the original image. Figure 2.41 shows a one-pixel-wide line from a black and
white bitmap image at three different enlargements, the second twice as large and the third
three times as large as the first. The jagged edges in the original line look even blockier as
the line is enlarged. Other more refined algorithms for upsampling can soften the blocky
edges somewhat, but none completely eliminates the aliasing. Algorithms for upsampling
are discussed in more detail in Chapter 3.

\
L]

Figure 2.40 Line two pixels wide, Figure 2.41 Aliasing of bitmap
anti-aliased line resulting from enlargement

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 86 j\%

86 Chapter 2 Digital Image Representation

Aliasing in rendering can occur in both bitmap and vector graphics. In either type of dig-
ital image, the smoothness of lines, edges, and curves is limited by the display device.
There is a difference, however, in the two types of digital imaging, and vector graphics has
an advantage over bitmap images with respect to aliasing. Aliasing in a bitmap image be-
comes even worse if the image is resized. Vector graphic images, on the other hand, have
only the degree of aliasing caused by the display device on which the image is shown, and
this is very small and hardly noticeable.

Changing the size of an image is handled differently in the case of vector graphics.
Since vector graphic files are not created from samples and not stored as individual pixel
values, upsampling has no meaning in vector graphics. A vector graphic image can be re-
sized for display or printing, but the resizing is done by recomputation of geometric shapes
on the basis of their mathematical properties. In a vector graphic image, a line is stored by
its endpoints along with its color and an indication that it is a line object. When the image
is displayed, the line is rendered by a line-drawing algorithm at a size relative to the image
dimensions that have been chosen for the image at that moment. Whenever the user re-
quests that the image be resized, the pixels that are colored to create the line are recom-
puted using the line-drawing algorithm. This means that the jaggedness of the line will
never be worse than what results from the resolution of the display device. In fact, to notice
the aliasing at all when you work in a vector graphic drawing program, you need to turn off
the anti-aliasing option when you view the image. Figure 2.42 shows a vector graphic line
at increasing enlargements, with the “view with anti-aliasing” option turned off. The small
amount of aliasing is due entirely to the resolution of the display device. The important
thing to notice is that as the line gets larger, the aliasing doesn’t increase. These observa-
tions would hold true for more complex vector graphic shapes as well. (When the lines are
printed out on a printer with good resolution, the aliasing generally doesn’t show up at all
because the printer’s resolution is high enough to create a smooth edge.)

|

Figure 2.42 Aliasing does not
increase when a vector graphic line
is enlarged

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 87 $

2.6 Color 87

In summary, vector graphics and bitmap imaging each has advantages. Vector graphics
imaging is suitable for pictures that have solid colors and well-defined edges and shapes.
Bitmap imaging is suitable for continuous tone pictures like photographs. The type of im-

ages you work with depends on your purpose.

2.6 COLOR

2.6.1 Color Perception and Representation

Color is both a physical and psychological phenomenon. Physically, color is composed of
electromagnetic waves. For humans, the wavelengths of visible colors fall between approx-
imately 370 and 780 nanometers, as shown in Figure 1.19 and 1.20. (A nanometer, abbre-
viated nm in the figure, is 1077 meters.) These waves fall upon the color receptors of the
eyes, and in a way not completely understood, the human brain translates the interaction

between the waves and the eyes as color perception.

Although it is possible to create pure color composed of a single
wavelength—for example, by means of a laser—the colors we see
around us are almost always produced by a combination of wave-
lengths. The green of a book cover, for example, may look like a
pure green to you, but a spectrograph will show that it is not. A
spectrograph breaks up a color into its component wavelengths,
producing a spectral density function P(A). A spectral density func-
tion shows the contributions of the wavelengths A to a given per-
ceived color as A varies across the visible spectrum.

Spectral density functions are one mathematical way to repre-
sent colors, but not a very convenient way for computers. One prob-
lem is that two colors that are perceived to be identical may, on
analysis, produce different spectral density curves. Said the other
way around, more than one spectral density curve can represent two
colors that look the same. If we want to use a spectral density curve
to tell a computer to present a particular shade of green, which
“green” spectral density curve is the best one to use?

It is possible to represent a color by means of a simpler spectral
density graph. (This is basically how color representation is done in
the HSV and HLS color models, as will be explained below.) That
is, each color in the spectrum can be characterized by a unique
graph that has a simple shape, as illustrated in Figure 2.43. The
graph for each color gives the color’s dominant wavelength, equiv-
alent to the hue; its saturation (i.e., color purity); and its luminance.

The dominant wavelength is the wavelength at the spike in the

GS| DE: The differences between the power,\
energy, luminance, and brightness of a light can
be confusing. Two colored lights can be of the
same wavelength but of different power. A
light’s power, or energy per unit time, is a phys-
ical property not defined by human perception.
Power is related to brightness in that if two
lights have the same wavelength but the first has
greater power, then the first will appear brighter
than the second. Brightness is a matter of sub-
jective perception and has no precise mathemat-
ical definition. Luminance has a mathematical
definition that relates a light’s wavelength and
power to how bright it is perceived to be. Inter-
estingly, lights of equal power but different
wavelengths do not appear equally bright. The
brightest wavelengths are about 550 nm. Bright-
ness decreases from there as you move to longer
or shorter wavelengths. In general, the more lu-
minant something is, the brighter it appears to
be. However, keep in mind that brightness is in
the eye of the beholder—a matter of human
perception—while luminance has a precise defi-
nition that factors in power, wavelength, and the
average human observer’s sensitivity to that

wavelength.

graph. The area beneath the curve indicates the luminance L. (This “curve” is a rectangular
area with a rectangular spike.) Saturation S is the ratio of the area of the spike to the total

area. More precisely with regard to Figure 2.43,
L= —ae+ (f —e)c—b)

_ ([~ o~ b
L

S

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 88 $

88 Chapter 2 Digital Image Representation

=
&)
&
&
Q
o
L
8 ’_‘
o
wn

el

| | >
a b ¢ d
Wavelength A

Figure 2.43 Spectral density graph showing hue, saturation, and
lightness

This representation has intuitive appeal, since it is natural to consider first a color’s essen-
tial hue and then consider varying shades and tones. However, the dimensions of hue,
saturation, and brightness do not correspond very well to the way computer monitors are
engineered. (We use the terms monitor and display interchangeably to refer to the viewing
screen of a computer.) An alternative way to look at a color is as a combination of three pri-
maries. Cathode ray tube (CRT) monitors, for example, display colored light through a com-
bination of red, green and blue phosphors that light up at varying intensities when excited by
an electron beam. Similarly, liquid crystal display (LCD) panels display color with neigh-
boring pixels of red, green, and blue that are either lit up or masked by the liquid crystals.

So what is the best way to model color for a computer? There is no simple answer,
since different models have advantages in different situations. In the discussion that fol-
lows, we will look at color models mathematically and find a graphical way to compare
their expressiveness.

2.6.2 RGB Color Model

One method to create a wide range of colors is by varying combinations of three primary col-
ors. Three colors are primary with respect to one another if no one of them can be created as
a combination of the other two. Red, green, and blue are good choices as primary colors be-
cause the cones of the eyes—the colors receptors—are especially sensitive to these hues.

C=rR+ gG + bB

where r, g, and b indicate the relative amounts of red, green, and blue energy respectively.
R, G, and B are constant values based on the wavelengths chosen for the red, green and blue
components. The values 7, g, and b are referred to as the values of the RGB color components
(also called color channels in application programs).

The color space for the RGB color model is easy to depict graphically. Let R, G, and G
correspond to three axes in three-dimensional space. We will normalize the relative
amounts of red, green, and blue in a color so that each value varies between 0 and 1. This
color space is shown in Figure 2.44. The origin (0, 0, 0) of the RGB color cube corre-
sponds to black. White is the value (1, 1, 1). The remaining corners of the cube correspond
to red, green, blue, and their complementary colors—cyan, magenta, and yellow, respec-
tively. Others colors are created at values between 0 and 1 for each of the components. For

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 89 j\%

2.6 Color 89

Blue (0,0,1) Cyan (0,1,1)

Magenta (1,0,1)
White (1,1,1)

|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Black (0.0.0
1 Black©00) | Green (0,1,0)

Red (1,0,0) Yellow (1,1,0)
Figure 2.44 RGB color cube

example, (1, 0.65, 0.15) is light orange, and (0.26, 0.37, 0.96) is a shade of blue. Shades
of gray have equal proportions of red, green, and blue and lie along the line between
(0, 0, 0) and (1, 1, 1). Notice that if you decrease each of the values for light orange in
(1, 0.65, 0.15) but keep them in the same proportion to each other, you are in effect
decreasing the brightness of the color, which is like adding in more black. The color moves
from a light orange to a muddy brown. You can’t increase the brightness of this color and
maintain the proportions in Photoshop’s HSB color model, because one of the components
is already 1, the maximum value. The color is at 100% brightness. On the other hand, the
color (0.32, 0.48, 0.39) is a shade of green not at full brightness. You can multiply each
component by 2 to get (0.64, 0.96, 0.78), a much lighter shade of green.

You may want to note that in mathematical depictions of the RGB color model, it is
convenient to allow the three color components to range between 0 and 1. However, the corre-
sponding RGB color mode in image processing programs is more likely to have values rang-
ing between 0 and 255, since each of the three components is captured in eight bits. What is im-
portant is the relative amounts of each component, and the size of these amounts with respect
to the maximum possible values. For example, the light orange described as (1, 0.65, 0.15)
above would become (255, 166, 38) in an RGB mode with maximum values of 255.

It’s interesting to note that grayscale values fall along the RGB cube’s diagonal from
(0,0,0) to (1,1,1). All grayscale values have equal amounts of R, G, and B. When an image
is converted from RGB color to grayscale in an image processing program, the equation
can be used for the conversion of each pixel value. This equation reflects the fact that the
human eye is most sensitive to green and least sensitive to blue.

KEY EQUATION

Let an RGB color pixel be given by (R, G, B), where R, G, and B are the red,
green, and blue color components, respectively. Then the corresponding grayscale value
is given by (L, L, L), where

L = 0.30R + 0.59G + 0.11B

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 90 j\%

90 Chapter 2 Digital Image Representation

Since all three color components are equal in a gray pixel, only one of the three values
needs to be stored. Thus a 24-bit RGB pixel can be stored as an 8-bit grayscale pixel.

2.6.3 CMY Color Model

Like the RGB color model, the CMY color model divides a color into three primaries, but using
a subtractive rather than an additive color creation process. The CMY model can be depicted
in a unit cube similar to the RGB model. The difference is that the origin of the cube is white
rather than black, and the value for each component indicates how much red, green and blue
are subtracted out, effectively combining the color components cyan, magenta, and yellow,
their respective complements. Assuming that each of the three RGB (or CMY) components is
a value between 0 and 1, the corresponding CMY components can be computed as follows:

% KEY EQUATIONS

For a pixel represented in RGB color, the red, green, and blue color compo-
nents are, respectively, R, G, and B. Then the equivalent C, M, and Y color components
are given by

C=1—-R
M=1-G
Y=1-8B
Similarly, RGB values can be computed from CMY values with
R=1-C
G=1—-M
B=1-Y

(The values can be given in the range of [0 255] or normalized to [0 1].)

The CMY model, used in professional four-color printed processes, indicates how much
cyan, magenta, and yellow ink is combined to create color. Theoretically, the maximum
amount of cyan, magenta, and yellow ink should combine to produce black, but in fact they
produce a dark muddy brown. In practice, the four-color printing process used in profes-
sional presses adds a fourth component, a pure black ink, for greater clarity and contrast.
The amount of K, or black, can be taken as the smallest of the C, M, and Y components in
the original CMY model. Thus the CMYK model is defined as follows:

KEY EQUATIONS

For a pixel represented in the CMY color model, the cyan, magenta, and yel-
low color components are, respectively, C, M, and Y. Let K be the minimum of C, M, and
Y. Then the equivalent color components in the CMYK model, C,,..,, M 015 ¥ piew» and K
are given by

K = min(C, M, Y)
Cnew =C-K
My = M — K
Yiew=Y — K

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 91 $

2.6 Color 91

(The definition above theoretically gives the values for CMYK. However, in practice, other
values are used due to the way in which colored inks and paper interact.)

2.6.4 HSV and HLS Color Models

Instead of representing color by three primary color components, it is possible to speak of
a color in terms of its hue (i.e., the essential color), its lightness (or value or luminance),
and its saturation (i.e., the purity of the color). Both the HSV color model (also called HSB)
and the HLS model represent color in this manner. Geometrically, the HSV color space is a
distortion of the RGB space into a kind of three-dimensional diamond called a hexacone.
Picture turning the RGB cube around and tilting it so that you are looking straight into the
origin (white/black) with the remaining corners visible—two on the top, two on the bot-
tom, one on the left, and one on the right, as shown in Figure 2.45. Imagine this as a flat,
two-dimensional hexagon where the center white/black point is connected by a line to each
vertex, as shown in Figure 2.46. The six primary colors and their complements are at the
outside vertices of this shape. Now imagine expanding this into three dimensions again by
pulling down on the center point. You have created the HSV color space, as shown in
Figure 2.47.

To see how this shape captures the HSV color model, draw an imaginary circle that
touches all the vertices of the hexacone’s base. The hue is represented by a position on this
circle given in degrees, from 0 to 360, with red conventionally set at 0. As the hue values
increase, you move counterclockwise through yellow, green, cyan, etc. Saturation is a func-
tion of the color’s distance from the central axis (i.e., the value axis). The farther a color is
from this axis, the more saturated the color. The value axis lies from the black point of the
hexacone through the center of the circle, with values ranging from 0 for black to 1 for
white, where 0 is at the tip and 1 is on the surface of the hexacone. For example, (58°, 0.88,
0.93) is a bright yellow.

The HLS color model is essentially the same. To create the HLS color space from the
HSV space (and hence from RGB), go through the same steps illustrated in Figure 2.45,
Figure 2.46, and Figure 2.47. Then take a mirror image of the shape in Figure 2.47 and con-
nect it to the top, as in Figure 2.48. Hue and saturation are given as before, but now light-
ness varies from O at the black tip to 1 at the white tip of the double cones.

Green Yellow Green Yellow Supplement on
transforming color
spaces:

Red Cyan - Red
White/
Black
interactive tutorial
Blue Magenta Blue Magenta
Figure 2.45 RGB color cube viewed Figure 2.46 RGB color cube collapsed
from the top to 2D

o

ColorModels.htm

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 92 $

92 Chapter 2 Digital Image Representation

Green Yellow
Cyan Red

Magenta

Black
Figure 2.47 HSV color space, a hexacone

Cyan Red

Magenta

Black
Figure 2.48 HLS Color Space

The distortion of the RGB color space to either HSV or HLS is a non-linear transforma-
tion. In other words, to translate from RGB to HSV, you can’t simply multiply each of the
R, G, and B components by some coefficient. Algorithm 2.3 shows how to translate RGB
to HSV. Algorithm 2.4 translates from RGB to HLS. The inverse algorithms are left as an
exercise.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 93 $

ALGORITHM 2.3 FNi{c|:N o)Y

algorithm RGB_to_HSV
/* Input: 1, g, and b, each real numbers in the range [0 . . . 1].
Output: h, a real number in the range of [0 ... 360), except if s = 0, in which case h is
undefined. s and v are real numbers in the range of [0 . .. 1].*/
{
max = maximum(r,g,b)
min = minimum(r,g,b)

vV = max
if max # 0 then s = (max — min)/max
elses =0

if s == 0 then h = undefined

else {

diff = max — min

if r == max then h = (g — b) / diff

elseif g == max thenh = 2 + (b — r) / diff
elseif b == max thenh =4 + (r — g) / diff
h =h* 60

if h <0thenh = h + 360

ALGORITHM 2.4 Ri{cl-Hel |85

algorithm RGB_to_HLS
/* Input r, g, and b, each real numbers in the range [0 . .. 1] representing the red, green,
and blue color components, respectively
Output: h, a real number in the range of [0 . .. 360] except if s = 0, in which case h is
undefined. L and s are real numbers in the range of [0 ... 1]. h, L, and s represent hue,
lightness, and saturation, respectively.*/
{
max = maximum(r,g,b)
min = minimum(r,g,b)
L = average(max, min)
if max == min thens = 0
else {
sum = max + min
diff = max — min
if L = 0.5 then s = diff / sum
else s = diff / (2 — max + min)
r_temp = (max — r)/ diff
g_temp = (max — g)/ diff
b_temp = (max — b) / diff
if r == max then h = b_temp — g_temp
else if g == max thenh = 2 + r_temp — b_temp
else if b == max thenh = 4 + g_temp — r_temp
h =h* 60
if h <Othenh =h + 360

Supplements on
color model
conversions:

programming
exercise

93

ConvertingBetweenColorModels.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 94 j\%

94 Chapter 2 Digital Image Representation

2.6.5 Luminance and Chrominance Color Models

Another way to specify a color is to capture all the luminance information in one value and
put the color (i.e., chrominance) information in the other two values. The YIQ model is one
example that takes this approach.

The YIQ model is a simple translation of the RGB model, separating out the information
in a way that is more efficient for television broadcasting. In the early days of color televi-
sion, both black and white and color signals had to be transmitted because not all consumers
had color television sets. It was convenient to consolidate all of the “black and white” infor-
mation—which is luminance—in one of the three components and capture all the color
information in the other two. That way, the same transmission worked for both kinds of con-
sumers. A linear transformation of the values makes this possible. Specifically,

KEY EQUATION

For a pixel represented in RGB color, let the red, green, and blue color com-
ponents be, respectively, R, G, and B. Then the equivalent Y, /, and Q color components
in the YIQ color model are given by

Y 0.299 0.587 0.114 || R
I |=]1056 -0275 —-0321|G
0 0212 —0.523 0311 || B

(Note that the values in the transformation matrix depend upon the particular choice of
primaries for the RGB model.)

Y is the luminance component, and / and Q are chrominance. The inverse of the matrix
above is used to convert from YIQ to RGB. The coefficients in the matrix are based on pri-
mary colors of red, green, and blue that are appropriate for the standard National Television
System Committee (NTSC) RGB phosphor.

YIQ is the model used in U.S. commercial television broadcasting. Isolating luminance
in one of the three terms has a further advantage, aside from its advantage in color/black
and white broadcasting. Perhaps surprisingly, human vision is more sensitive to differences
in luminance than differences in color. Therefore, it makes more sense to give a more finely
nuanced representation of the luminance component than of the chrominance. In practical
terms, this means that we don’t need as many bits—and therefore as much bandwidth—for
the transmission of the I and Q components relative to the Y component. It would not be
possible to make this savings in bandwidth using the RGB model because in RGB the lu-
minance is not a separate element but instead is implicit in the combination of the three
components.

The YUV color model, originally used in the European PAL analog video standard, is
also based upon luminance and chrominance. The YCbCr model is closely related to the
YUYV, with its chrominance values scaled and shifted. YCbCr is used in JPEG and MPEG
compression. These compression techniques benefit from the separation of luminance from
chrominance since some chrominance information can be sacrificed during compression
without visible loss of quality in photographic images. This is called chroma subsampling.
Chapters 3 and 6 will explain chroma subsampling in more detail.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 95 j\%

2.6 Color 95
2.6.6 CIE XYZ and Color Gamuts

The RGB color model has the advantage of relating well to how the human eye perceives
color and how a computer monitor can be engineered to display color, in combinations of
red, green, and blue light. Its main disadvantage is that there exist visible colors that cannot
be represented with positive values for each of the red, green, and blue components.

It may seem that the obvious way to generate all possible colors is to combine all possi-
ble intensities of red, green, and, blue light—or at least enough of these values at discrete
intervals to give us millions of choices. For example, we could vary the intensity of the red
light through 256 evenly-spaced increments, and the same for green and blue. This would
give us 256 * 256 * 256 = 16,777,216 colors. That must cover the range of possible colors,
right? Wrong. In fact, there exist colors outside the range of those we can create in RGB,
colors that we cannot capture with any combination of red, green, and blue. But how does
anyone know this?

We know this by an experiment called color matching. In this
experiment, human subjects are asked to compare pure colors pro-
jected onto one side of a screen to composite colors projected be-

GS| DE: There is no fixed shade of red, gree)
and blue that must be used for RGB. The only

side them. The pure colors are created by single wavelength light.
The composite colors are created by a combination of red, green,
and blue light, and the amounts of the three components are called
the tristimulus values. For each pure color presented to the human
observer, these colors ranging through all of the visible spectrum,
the observer is asked to adjust the relative intensities of the red,
green, and blue components in the composite color until the match
is as close as possible. It turns out that there are pure colors in the
visible spectrum that cannot be reproduced by positive amounts of

requirement is that they be primary colors rela-
tive to each other in that no two can be com-
bined in any manner to create the third. The
actual wavelengths of R, G, and B chosen for
particular monitors depend on the characteris-
tics of the display itself. For example, for a CRT
monitor, the persistence of the phosphors in the
monitor will determine in part the choice of R,
G, and B. Persistence refers to the length of
time the phosphors continue to glow after

excitation by an electron beam.

red, green, and blue light. In some cases, it is necessary to “subtract
out” some of the red, green, or blue in the combined beams to match
the pure color. (Effectively, this can be done by adding red, green, or blue to the pure color
until the two light samples match.) This is true no matter what three visible primary colors
are chosen. No three visible primaries can be linearly combined to produce all colors in the
visible spectrum.

The implication of this experiment is that no computer monitor that bases its color dis-
play on combinations of red, green, and blue light can display all visible colors. The range
of colors that a given monitor can display is called its color gamut. Since computer moni-
tors may vary in their choice of basic red, green, and blue primaries, two computer moni-
tors based on RGB color can still have different gamuts. By similar reasoning, the gamut of
a color system based on the CMYK model will vary from one based on RGB. In practical
terms, this means that there will be colors that you can represent on your computer moni-
tor but you cannot print, and vice versa.

It would be useful to have a mathematical model that captures all visible colors. From
this model, we could create a color space in which all other color models could be com-
pared. The first step in the direction of a standard color model that represents all visible col-
ors was called CIE XYZ, devised in 1931 by the Commission Internationale de 1’Eclairage.
You can understand how the CIE color model was devised by looking graphically at the re-
sults of the color matching experiment. Consider the graph in Figure 2.49. (See the work-
sheet associated with Exercise 10 at the end of this chapter for an explanation of how this
graph was created.) The x-axis shows the wavelength, A, ranging through the colors of the

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 96 $

96 Chapter 2 Digital Image Representation

Supplements on
XYZ color and the
CIE chromaticity
diagram:

s

mathematical
modeling

programming
exercise

3.0

251
1(A)
20

1.5F

b(\) g(d)
1.0

Tristimulus values

05

’ \/

-0.5 1 1 I |
300 400 500 600 700 800

A in nanometers

Figure 2.49 Color matching functions

visible spectrum. The y-axis shows the relative amounts of red, green, and blue light energy
that the “average” observer combines to match the pure light sample. (Units are unimpor-
tant. It is the relative values that matter.) Notice that in some cases, red has to be “sub-
tracted” from the composite light (i.e., added to the pure sample) in order to achieve a
match.

Mathematically, the amount of red light energy needed to create the perceived pure
spectral red at wavelength A is a function of the wavelength, given by r(X), and similarly
for green (the function g(A)) and blue (the function b())). Let C(A) be the color the average
observer perceives at wavelength A. Then C(A) is given by a linear combination of these
three components, that is,

C(A) = r(MR + g(M)G + b(M)B
Here, R refers to pure spectral red light at a fixed wavelength, and similarly for G and B.
The CIE model is based on the observation that, although there are no three visible pri-

mary colors that can be combined in positive amounts to create all colors in the visible
spectrum, it is possible to use three “virtual” primaries to do so.

GSl DE: As is the case with any set of primD

These primaries—called X, Y, and Z—are purely theoretical rather
than physical entities. While they do not correspond to wavelengths

ies, there is not just one “right” set of values for
X, Y, and Z, but X, Y, and Z are in fact fixed by
the CIE standard. They must be primaries with
respect to each other, and we want them to be
combinable in positive amounts to produce all
colors in the visible spectrum. It was also found
that by a proper choice of Y, function y(A) could
be modeled such that its shape is the same as
the luminous efficiency function. The luminous
efficiency function is the eye’s measured re-
sponse to monochromatic light of fixed energy
at different wavelengths. With Y chosen in this
fashion, y(A) is always equal to the overall lumi-
nance of the light in C(A).

<

of visible light, they provide a mathematical way to describe colors
that exist in the visible spectrum. Expressing the color matching
functions in terms of X, Y, and Z produces the graphs in Fig-
ure 2.50. We can see that X, Y, and Z are chosen so that all three
functions remain positive over the wavelengths of the visible spec-
trum. We now have the equation

C(A) = x(M)X + y(A)Y + z(M)Z

to represent all visible colors.

We are still working toward finding a graphical space in which
to compare color gamuts, and the CIE color model is taking us
there. The dotted line in Figure 2.52 graphs the values of x, y, and z

for all perceived colors C(A) as A varies across the visible spectrum.

o

CIE_XYZ_Color.pdf
CIE_XYZ_Color_Programming_Assignment.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 97 $

2.6 Color 97

2.0

z(A)

1.8

1.6 -

14+

12+

1.0

0.8 -

Tristimulus values

0.6 -

04+

02

0 1
350 400

Il Il Il L
550 600 650 700 750
A in nanometers
Figure 2.50 XYZ color matching functions

| |
450 500

By the choice of X, Y, and Z, all values x(A), y(A), and z(A) lie in the positive octant. Clearly,
not all visible colors are contained within the RGB gamut.

To see the different colors and where the gamuts do or do not overlap, we will picture
this in two dimensions. To simplify things further, it is convenient to normalize the values
of x(A), y(A), and z(A) so that they sum to 1. That is, the three colors combine to unit
energy. Furthermore, the normalized values show each component’s fractional contribution
to the color’s overall energy. Thus we define

() o ey o)
PO e T T o+

YO =N+ 2

In this way, any two of the color components give us the third one. For example,

XA =1=y'@) =W

x'(A), y'(A), and z'(A) are called the chromaticity values. Figure 2.51 shows where the
chromaticity values fall within the CIE three-dimensional space. Let s(A) and s'(A) be para-
metric functions defined as follows:
s(A) = (x(A), y(A), z(A))

s'(A) = (x"(A), y'(A), 2/ (X))

Each point from function s(A) can be plotted in 3D space where x(A) lies on the X-axis,

y(A) lies on the Y-axis, and z(A) lies on the Z-axis (and similarly for s’()A). Because we have
stipulated that x"(A) + y'(A) + z'(A) = 1, s'(A) must lie on the X + Y + Z = 1 plane.

o

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 98 $

98 Chapter 2 Digital Image Representation

!
- T rr - Tr T

1.0~ 10
Figure 2.51 X + Y + Z = 1 plane

We also know that x(A), y(A), and z(A) are always positive because we defined primaries X,
Y, and Z so that they would be. Thus, we need only look at the area in the positive octant
where X + Y + Z = 1, represented by the triangle in the figure. The curve traced on this
plane shows the values of s'()) for the pure spectral colors in the visible spectrum. These are
fully saturated colors at unit energy. The colors in the interior of this curve on the
X + Y + Z = 1 plane are still at unit energy, but not fully saturated.

In Figure 2.52, s(A) is the finely-dotted line, the X + ¥ + Z = 1 plane is a triangle
drawn with solid lines, and the projection of s(A) ontothe X + Y + Z = 1 plane is s'(A),

— X+Y+Z=1
------ CIE color space
——— projection of CIE

: ~

1.0 < '

0.6 -

0.4 -

~~~~

0.2 ...........

Figure 2.52 Visible color spectrum projected onto the X + Y + Z =1 plane

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 99 $

2.6 Color 99

08 0.2 ’ 7
Figure 2.53 Visible colors in CIE color space

the horseshoe-shaped coarsely dotted line, which forms the perimeter of the cone seen in
Figure 2.53. The horseshoe-shaped outline from Figure 2.52 is projected onto the XY plane.
The 2D projection on the XY plane is called the CIE Chromaticity Diagram (Figure 2.54). In
this two-dimensional diagram, we have a space in which to compare the gamuts of varying
color models. However, we have said that color is inherently a three-dimensional phenome-
non in that it requires three values for its specification. We must have dropped some infor-
mation in this two-dimensional depiction. The information left out here is energy. Recall

1. Illuminant Area
0.8 2. Green
3. Blue Green
0.7 4. Green Blue
5. Blue
06 2 19 6. Blue Purple
0.5 18 e 7. Purple
Y 16 8. Purple Red
044’ 15
: 1 G 1a 9. Red Purple
10. Red
0.3 —
- > 10 Y | 11. Purple Pink
4 11 9 ] .
0.2 5 12. Pink
] 7 8/ 13. Orange Pink
0.1 6 14. Red Orange
[ ] 15. Orange
0.0 0.1 02 03 04 0.5 06 0.7 0.8 16. Yellow Orange
X 17. Yellow

18. Yellow Green
19. Green Yellow
Figure 2.54 CIE chromaticity diagram

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 100$

100 Chapter 2 Digital Image Representation

that we have normalized the chromaticity functions so that they combine for unit energy.
Unit energy is just some fixed level, the only one we consider as we compare gamuts within
the CIE diagram, but it’s sufficient for the comparison.

Figure 2.53 shows a cone shape that defines the outer surface of the CIE color space.
Imagine extending this shape out infinitely into the positive octant. This surface and all the
points in its interior represent all the visible colors out to (and beyond) maximum visible
luminance. As you move toward (0,0,0), the colors are decreasingly luminant.

Figure 2.55 shows the gamuts for the RGB color vs. the CMYK

luminance.

color space. Note that for each, we must be assuming particular

_ASIDE: Not all visible colors are represented wavelengths for R, G, and B and pigments for C, M, Y, and K. Thus,
in the CIE chromaticity diagram. Color percep-

tions that depend in part on the luminance of
a color are absent from the diagram—brown,
for example, which is an orange-red of low blue. For any given choice of R, G, and B, these primary colors can

the RGB gamut could be the gamut for a specific computer moni-
tor, given the wavelengths that it uses for its pure red, green, and

be located in the CIE chromaticity diagram by the x and y coordi-

nates given below. For example, a reasonable choice or R, G, and B
would be located at these positions in the CIE diagram:
R G B
X 0.64 0.30 0.15
y 0.33 0.60 0.06
According to these values, the color red lies at 0.64 along the horizontal axis in the CIE
diagram and 0.33 along the vertical axis.

The gamut for RGB color is larger than the CMYK gamut. However, neither color space
is entirely contained within the other, which means that there are colors that you can

CMYK Gamut RGB Gamut
0.9 [ 1] 1. lluminant Area
0.8 2. Green
3. Blue Green
0.7 4. Green Blue
19 5. Blue
06 2 6. Blue Purple
18
0.5 ? 7. Purple
Y 5 16 ? 8. Purple Red
0.4 1 G 9. Red Purple
03 S\ 10. Red
) 10 % | 11. Purple Pink
1
02 [\ % . S = 12. Pink
1 6 8 13. Orange Pink
0.1 7 14. Red Orange
[ ] 15. Orange
0.0 0.1 02 03 04 05 06 0.7 0.8 16. Yellow Orange
X 17. Yellow

18. Yellow Green
19. Green Yellow
Figure 2.55 RGB vs. CMYK gamuts

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 101$

2.6 Color 101

1.0

09 520 Wavelengths marked

on perimeter of curve

0.8
0.7
0.6
500 1

Y 05
0.4
0.3 700

0.2

0.1

400> I I I I I
0 01 02 03 04 05 06 07 08 09 1.0

0

Figure 2.56 Illuminant C

display on the computer monitor that cannot be printed, and vice versa. In practice this is
not a big problem. The range of colors for each color model is great and the variations from
one color to the next are sufficiently detailed, and usually media creators do not require an
exact reproduction of their chosen colors from one display device to the next. However,
where exact fidelity is aesthetically or commercially desirable, users need to be aware of the
limits of color gamuts.

CIE diagram is helpful in illustrating color concepts and relationships. In Figure 2.56,
point C is called illuminant C, or fully saturated white. Points along the edge of the curved
horseshoe shape are fully saturated spectral colors. Colors along the straight line base are
purples and magentas, colors that cannot be produced by single-wavelength spectral light
nor isolated from daylight spectrographically. The line joining any two colors in the graph
corresponds to the colors that can be created by a combination of these colors. To find the
dominant wavelength of a color that lies at point A, it is possible to create a line between
points C and A and extend it to the nearest point on the perimeter of the horseshoe shape.
For example, the dominant wavelength of point A in Figure 2.56 is approximately 550, and
the color is a shade of green. If a point is closest to the base of the horseshoe, it is called a
nonspectral color. D in Figure 2.56 is an example. Points like D have no spectral dominant
wavelength. However, if we draw a line from D through C and find where it crosses the
horseshoe shape (at point E), we find the complementary dominant wavelength of a
nonspectral point.

Let AC denote the length of line segment AC. Then the saturation of the color at point

AC
A is defined by the ratio BC (Figure 2.56). The closer to the perimeter, the more saturated
a color is. For example, point A is closer to illuminant C than to point B. Thus, it is a pastel or

DC
light green. For non-spectral colors such as D, saturation is defined as DF

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 102$

102 Chapter 2 Digital Image Representation

A third advantage of the CIE Chromaticity Diagram is that it gives us a way to standar-
dize color representation. Say that you have a color and you want to tell someone else ex-
actly what that color is. It is possible, with the right instruments, to measure the x, y, and z
values of your color and communicate these to someone else as a precise specification. In
the reverse, other instruments allow you to re-create a color specified in x, y, and z
coordinates.

The conversion from CIE-XYZ to RGB is a simple linear transformation. The coeffi-
cients in the conversion matrix are dependent on the wavelengths chosen for the primaries
for the RGB model as well as the definition of white. As noted previously, the RGB values
can vary from one computer monitor to another. A reasonable transformation matrix is
given below.

KEY EQUATION

For a pixel represented in XYZ color, let the values for the three color compo-
nents be X, Y, and Z. Then the equivalent R, G, and B color components in the RGB
color model are given by

R 324 —154 —050 || X
G|=|-097 1.88 004 || Y
B 0.06 —0.20 1.06 || Z

Conversion from RGB to CIE-XYZ uses the inverse of the above matrix.

2.6.7 CIE L*a* b*, CIE L*U*V*, and Perceptual
Uniformity

The CIE XYZ model has three main advantages: it is device-independent; it provides a way
to represent all colors visible to humans; and the representation is based upon spectropho-
tometric measurements of color. The RGB and CM YK color models, on the other hand, are
not device-independent. They begin with an arbitrary choice of complementary primary
colors, from which all other colors in their gamuts are derived. Different computer moni-
tors or printers can use different values for R, G, and B, and thus their gamuts are not nec-
essarily identical. The RGB and CM YK models are not comprehensive, either. Regardless
of the choice of primary colors in either model, there will exist colors visible to humans
that cannot be represented.

The development of the CIE XYZ color model overcame these disadvantages, but there
was still room for improvement. A remaining disadvantage of the CIE XYZ model is that
it is not perceptually uniform. In a perceptually uniform color space, the distance between
two points is directly proportional to the perceived difference between the two colors. A
color space that is perceptually uniform is easier to work with at an intuitive level, since

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 103$

2.6 Color 103

colors (as they look to the human eye) change at a rate that is proportional to changes in the
values representing the colors.

It is possible for a color model to be perceptually uniform in one dimension but not per-
ceptually uniform in its three dimensions taken together. For example, in the HSV color
model, hues change at a steady rate as you rotate from 0 to 360 degrees around the plane
denoting hue. Similarly, brightness varies steadily up and down the brightness axis. How-
ever, equidistant movement through the three combined planes does not result in equal per-
ceived color changes.

The Commission Internationale de 1’Eclairage continued to refine its color model and
by 1976 produced the CIE L*a*b* and CIE L*U*V* models. CIE L*a*b* is a subtractive
color model in which the L* axis gives brightness values varying from 0 to 100, the a axis
moves from red (positive values) to green (negative values), and the b axis moves from yel-
low (positive values) to blue (negative values). CIE L*U*V is an additive color model that
was similarly constructed to achieve perceptual uniformity, but that was less convenient in
practical usage.

Because the CIE L*a*b* model can represent all visible colors, it is generally used as
the intermediate color model in conversions between other color models, as described in
Section 2.4.

2.6.8 Color Management Systems

As careful as you might be in choosing colors for a digital image, it is difficult to ensure
that the colors you choose will be exactly the colors that others see when your picture is
placed on the web or printed in hard copy. There are a number of reasons for this. As we
have seen, the gamut of colors representable by an RGB monitor is not identical to the
gamut printable in a CMYK color processing system, so you may lose color fidelity in
going from the electronic to the hard copy format. Even if you remain in RGB color and
display your picture only on computers, you can’t be sure that the RGB space of one mon-
itor is the same as the RGB space of another. The color space of your own monitor can even
change over time as your computer ages and the screen’s ability to glow and show color di-
minishes. There are perceptual and environmental influences as well. Colors look different
depending on the ambient lighting, the incidental surrounding colors like background pat-
terns on your computer screen, and the reflection of your own clothing on the computer
monitor.

Most of the time, the shifts in a picture’s colors from one environment to the next are
subtle and insignificant. However, artists may have aesthetic reasons for seeking color con-
sistency, or an advertising agency may have commercial ones. In cases where color consis-
tency is important, a color management system is needed. Different hardware devices and
application programs—for example, scanners, computer monitors, printers, and image pro-
cessing programs—each have their own color spaces and basic color settings. A color man-
agement system communicates the assumptions about color spaces, settings for primary
colors, and the mapping from color values to physical representations in pixels and ink
from one device to another. Using the CIE color space as a universal, device-independent
language, a color management system serves as a translator that communicates color set-
tings from one device or software program to another.

Color management involves five steps: calibrating your monitor, characterizing your
monitor’s color profile, creating an individual image’s color profile that includes choices

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 104$

104 Chapter 2 Digital Image Representation

for color model and rendering intent, saving the color profile with the image, and reproduc-
ing the image’s color on another device or application program on the basis of the source
and destination profiles.

Monitor calibration and characterization can be done with specialized hardware or
software. The operating system of your computer or your image processing program prob-
ably have a color management system that allows you to calibrate and profile your moni-
tor, or you can use more precise hardware-based systems. Calibration should be done be-
fore the monitor is characterized. For good results, it should be done in typical lighting
conditions, on a monitor that has been warmed up, and with a background screen of neu-
tral gray. Generally this step begins with the choice of a basic ICC (International Color
Consortium) profile, to which changes can be made. The first adjustment is setting the
monitor’s white point as measured in degrees Kelvin. Daylight is 6500° Kelvin—generally
the default hardware setting—while warm white is 5000°. While usually you’ll want to
keep the white point set to the hardware default, in some cases you may want to adjust it to
reflect the conditions in which you expect your images to be viewed. Calibration also in-
volves gamma correction, or adjustment of the midtone brightness. When the adjustments
have been made, the new monitor profile is saved. If precise color reproduction is impor-
tant to your work, it may be necessary to recalibrate your monitor periodically as image
specifications or working environments change.

Once your monitor has been properly calibrated, a color management policy can be cre-
ated and saved with each individual image. The image’s color management policy is based
upon the monitor profile, to which special settings are added for a particular image or group
of images that determine how color is translated from one space to another. Typically, your
color management system will provide a set of predefined standard color management poli-
cies that are sufficient for most images. For example, sRGB is a color management policy
devised to be suitable for the typical PC monitor and accepted as a standard in many moni-
tors, scanners, and printers.

In addition to these standard policies, it is also possible to create a profile that cus-
tomizes the settings for rendering intent, dot gain, and the color management engine to be
used. The color management engine determines how pixel values in the image file convert
to the voltage values applied to—and thus the colors of—the pixels on the computer
screen. The rendering intent determines how a color in one color space will be adjusted
when it is out of the gamut of the color space to which it is being converted, which could
happen, for example, when moving from RGB to CMYK color space. One rendering in-
tent might seek to preserve colors in the manner that they are perceived by the human eye
relative to other colors; another might sacrifice color similarities for the saturation, or
vividness, of the overall image. Dot gain is a matter of the way in which wet ink spreads
as it is applied to paper, and how this may affect the appearance of an image. The color
management policy created for an image can be saved and shared with other images. It is
also embedded in individual image file and is used to communicate color, expressed in
terms of the device-independent CIE color space, from one device and application pro-
gram to another.

Most of us who work with digital image processing don’t need to worry very much
about color management systems. Your computer monitor has default settings and is ini-
tially calibrated such that you may not find it necessary to recalibrate it, and the default
color management policy in your image processing program may be sufficient for your
purposes. However, it is good to know that these tools exist so that you know where to turn
if precise color management becomes important.

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 105$

2.7 Vector Graphics 105
2.7 VECTOR GRAPHICS Supplements on the

mathematics of

curve-drawing:

2.7.1 Geometric Objects in Vector Graphics

Section 2.2 discussed how data is represented in bitmaps, which are suitable for photo-
graphic images with continuously varying colors. We now turn to vector graphics, an image
file format suitable for pictures with areas of solid, clearly separated colors—cartoon im-
ages, logos, and the like. Instead of being painted pixel by pixel, a vector graphic image is
drawn object by object in terms of each object’s geometric shape.

Although there are many file formats for vector graphics—.fh (Freehand), .ai (Adobe

,\
Ilustrator), .wmf (Windows metafile), .eps (encapsulated Postcript), etc.—they are all sim- {\‘ ]
ilar in that they contain the parameters to mathematical formulas defining how shapes are :
drawn. A line can be specified by its endpoints, a square by the length of a side, a rectan- worksheet

gle by the length of two sides, a circle by its radius, and so forth. However, not everything
you might want to draw can be pieced together by circles, rectangles, and lines. What if you
want to draw a curved flower vase, a winding path disappearing into the woods, a tree
branch, or a plate of spaghetti? Curves are the basis of many of the interesting and complex
shapes you might want to draw.

Consider how a curve is rendered on a computer display. If you were working in a draw-
ing program that offered no curve-drawing tool, what would you do? You’d have to create
a curve as a sequence of short line segments connected at their endpoints. If the line seg-
ments were short enough, the curve would look fairly smooth. But this would be a very te-
dious way to draw a curve, and the curve would be difficult to modify. A better way would
be to select just a few points and ask a curve-drawing tool to smooth out the curve defined
by these points. This is how curve tools work in drawing programs. In the next section, we
look behind the scenes at the mathematical basis for curve-drawing tools (called pen tools).
These tools make your work easy. You simply choose a few points, and a curve is created
for you. But how are these curve-drawing tools themselves implemented?

In the sections that follow, we will present the mathematics underlying the implementa-
tion of curves in vector graphics applications. A side note about terminology: If you’ve
encountered the term spline in your work in digital media, you may wonder what the
difference is between a curve and a spline. The word spline was borrowed from the vocab-
ulary of draftspersons. Before computers were used for CAD design of airplanes, automo-
biles, and the like, drafters used a flexible metal strip called a spline to trace out smooth
curves along designated points on the drafting table. Metal splines provided smooth, con-
tinuous curves that now can be modeled mathematically on computers. Some sources make
a distinction between curves and splines, reserving the latter term for curves that are inter-
polated (rather than approximated) through points and that have a high degree of continu-
ity (as in natural cubic splines and B-splines). Other sources use the terms curve and spline
interchangeably. We will distinguish between Hermite and Bézier curves on the one hand
and natural cubic splines on the other following the terminology used in most sources on
vector graphics. We restrict our discussion to Hermite and Bézier curves.

2.7.2 Specifying Curves with Polynomials
and Parametric Equations

Specifying a curve as a sequence of piecewise linear segments is tedious and inefficient.
It’s much handier simply to choose a few points and ask the drawing program to fit the

o


VectorGraphics.htm
VectorGraphicsWorksheet.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 106$

106 Chapter 2 Digital Image Representation

Supplements on
curve-drawing:

worksheet

curve to these. But for this to happen, the drawing program needs to use something more
powerful than linear equations to define the curve. In the discussion that follows, we show
that parametric cubic polynomial functions are an excellent formulation for curves. We will
step you through the basic mathematics you need in order to understand curve creation, in-
cluding a review of polynomials, functions, and parametric equations. With this back-
ground, you’ll be able to understand how the pen tool works in programs such as Illustrator
or GIMP.
An nth degree polynomial is a function that takes the form

apt™ + ap "N+ ay ot + o+ ayt + ag

where a,, # 0 and ay, a1, . . ., a, are the coefficients of the polynomial. Cubic polynomials
(i.e., 3@ degree polynomials, where the highest power is 3), are a good way to represent
curves. They offer sufficient detail for approximating the shape of curves while still being
efficient and easy to manipulate.

The polynomial functions used to describe curves can be expressed in one of three
ways: as explicit functions, as implicit functions, or as parametric representations. Both ex-
plicit functions and implicit functions are non-parametric forms. You will see that paramet-
ric representations are most convenient for curves. Before looking at a variety of paramet-
ric cubic polynomials that are used to represent curves, let’s review the difference between
parametric and non-parametric forms.

The explicit form of a function with one independent variable is

y=fx)
Equation 2.5

For example, the explicit form of the equation for a half-circle is
y=VriZ— 2

where r is the radius of the circle—a constant for any given circle. A function such as this
represents a one-dimensional function in that it has only one independent variable—in this
case, x. Note that a one-dimensional function can be graphed as a shape in two-dimensional
space. In the discussion that follows, we will use one-dimensional functions. The observa-
tions are easily generalized to two-dimensional functions graphable in 3D space.

The implicit form of the function equivalent to Equation 2.5 is

flx,y) =0
For example, the implicit form of the equation for a circle is
x>+ y2 -r2=0

Both the explicit and the implicit forms given above are nonparametric representations, and
neither one is particularly convenient for representing curves. In the case of the explicit
form, each value for x gives only one value for y, and this makes it impossible to represent
ellipses and circles. Furthermore, representing curves with vertical tangents is difficult be-
cause the slope of such a tangent would be infinity. In the case of the implicit functional
form, it is difficult to specify just part of a circle. To overcome these and other problems,
the parametric functional representation is used to define curves.
The parametric representation of a function takes the general form

P(r) = (x(2), y(1))

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 107$

2.7 Vector Graphics 107

for ¢ varying within some given range. Generally, the range of ¢ is taken to be between 0 and 1,
but other ranges are possible. (The range can always be normalized to between 0 and 1 if
needed.) P effectively gives us the points on the Cartesian plane which constitute the curve,
with the points’ positions given by an equation for each of the variables in the function, as in

x =x() and y = y(@)
As mentioned above, cubic polynomials are used in the parametric representation for
curves. This means that for a curve, the x and y positions of the points in the curve are given
by two parametric equations as follows:
x(t) = a’ + bt? + oyt + d,
and
Y(t) = ap® + bt* + eyt +d,

Equation 2.6
It is sometimes convenient to represent the parametric equations in matrix form. This
gives us:
a, a,
= — 43 2 bx by
P@t) = [x)yn)] = [r* = ¢ 1] 0=r=1
Cx €y
d, d,
or, in short,
P=T=C
a, ay a
b, b b
where T=[F ¢ t 1] and C=| * 7V |=
Cy  Cy c
d, d, d

So let’s think about where this is leading us. We define control points to be points that
are chosen to define a curve. We want to be able to define a curve by selecting a number of
control points on the computer display. In general, n + 1 control points make it possible to
model a curve with an n-degree polynomial. Cubic polynomials have been shown to be
good for modeling curves in vector graphics, so our n will be 3, yielding a 3rd degree poly-
nomial like the one in Equation 2.6. What we need now is an algorithm that can translate
the control points into coefficients a,, b, ¢y, dy, ay, by, Cy, and dy, which are then encoded
in the vector graphics file. That is, we want to get matrix C. When the curve is drawn, the
coefficients are used in the parametric equation, and 7 is varied along small discrete inter-
vals to construct the curve.

Given a set of points, what’s the right or best way to connect them into a curve? As you
may have guessed, there’s no single right way. A number of different methods have been
devised for translating points into curves, each with its own advantages and disadvantages
depending on the application or work environment. Curve-generating algorithms can be
divided into two main categories: interpolation algorithms and approximation algorithms.
An interpolation algorithm takes a set of control points and creates a curve that runs directly
through all of the points. An approximation algorithm creates a curve that does not necessarily

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 108$

108 Chapter 2 Digital Image Representation

pass through all the control points. Approximation algorithms are sometimes preferable in
that they allow the user to move a single control point and alter just one part of the curve
without affecting the rest of it. This is called local control. Hermite curves and natural cubic
splines are based on interpolation algorithms. Bézier curves are based on an approximation
algorithm. We’ll focus on Bézier curves here since they are the basis for curve-drawing
tools in commonly used vector graphics environments.

The general strategy for deriving the coefficients for the parametric equations from the
control points is this: To derive an nth degree parametric equation, you must find n + 1 co-
efficients, so you need n + 1 equations in n + 1 unknowns. In the case of a cubic polyno-
mial, you need four equations in four unknowns. These equations are formulated from con-
straints on the control points. For Bézier curves, for example, two of the control points are
constrained to form tangents to the curve. Let’s see how this can be derived.

2.7.3 Bézier Curves

Bézier curves are curves that can be approximated with any number of control points. It
simplifies the discussion to think of the curve in segments defined by four control points.
We divide these control points into two types: two endpoints, py and p3; and two interior
control points, p; and p,. Bézier curves are uniform cubic curves in the sense that it is as-
sumed that the control points are evenly distributed along the range of parameter ¢. Thus the
control points py, p1, p», and p3 correspond to the values of + = 0, 1/3,2/3, and 1. The
curve is defined by the constraints that py and p3 are endpoints, the line from pg to p; is a
tangent to one part of the curve, and the line from p, to p5 is a tangent to another part of the
curve. We use P’ to indicate the first derivative of P. Thus, P’'(0) is the rate of change of the
line segment from p, to p;, yielding
3%a*0> +2%b*0 + ¢ = (p, — py)/(1/3 — 0)
..¢ =3(p1 — po)
Similarly, P’(1) is the rate of change of the line segment from p, to p3, yielding
3ka*12+2%b*1 + ¢ = (p3 — p)/(1 — 2/3)
. 3a +2b + ¢ =3(p3s — pr)
The constraints that py is the first point on the curve and pj is the last are stated as
a*0’+b*0°+c*0+d=p,
C.d = Po
a*1P+b*1>+c*1 +d=p;s
S.a+b+c+d=p;

These four constraint equations in matrix form are

0 0 0 1 a Po
L1 1 1|,|b _ 3
0 01 0 c 3*(p1 — po)
32 1 0 d 3*%(p3 — p2)
or
A *GB =C

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page IOQJ\%

2.7 Vector Graphics

Solving for C, the coefficient vector, we get the form C = Al Gp, or

-1 —

a 0 0 0 1 Po
C - b _ 1 1 1 1 N P3
c 0 0 1 0 3%(p1 — po)
d 3210 L3*(p3 — P2)
Thus
a 2 -2 1 1] Po
C - b _ -3 3. -2 —1|, D3
c 0 0 10 3% (p1 — po)
d L0 0 04 L3*(p3—p2)

Simplifying, we get the following key equation:

KEY EQUATION

Let P(t) = (x(2), y(¢)) denote the parametric representation of a curve where
(x, y) are the pixel positions across the curve, x(¢) = a,t’ + bt* + ¢t +d,, and
y() = ayt3 + byt2 + ¢yt + d,. Let the coefficients of x(r) and y(r) be given by

a a, a,
b b, by .. . ) .
C = = . Then a Bézier curve is defined by control points pg, p1, P2, and
c Cx €y
d d, d,

3 and the equation

-1 3 -3 1 Po

c_| 3 6 3 0l p
3 3 0 0ol |p

1 0 0 0] Lps

Equation 2.7

To create an even simpler form of Equation 2.7, let

-1 3 =3 1
3 -6 30
M =
-3 3 0 0
1 0 0 0
and

Do
G =|P

D2

D3

109



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 110$

110 Chapter 2 Digital Image Representation

This yields
C=M*G

M is called the basis matrix. G is called the geometry matrix. The basis matrix and geome-
try matrix together characterize a type of curve drawn by means of particular control points
based on constraints on these points—in this case, in the manner used to define a Bézier
curve.

With M and G, we can derive another convenient representation for Bezier curves,
in terms of the curve’s blending functions, as they are called. Recall that T = [r* 7 ¢ 1].
A Bézier curve is defined by a cubic polynomial equation.

P(t)=T*M*G
The blending functions are given by T * M . That is,
P() = (T*M)*G = (1 — t)’pg + 3t(1 — 1)’p; + 3t*(1 — )p, + t'p;

(You should verify this by doing the multiplication and simplifying T * M .) The multipli-
ers (1 — 1), 3t(1 — 1)% 3t%(1 — 1), and > are the blending functions for Bézier curves and
can be viewed as weights for each of the four control points. They are also referred to as
Bernstein polynomials.

A more general formulation of Bézier curves allows for polynomials of any degree n
and describes the curves in terms of the blending functions. It is as follows:

n
P(1) = > pyblending;,(t) for 0=1=1
k=0

In the equation, blending ,(t) refers to the blending functions, where 7 is the degree of the
polynomial used to define the Bézier curve, and k refers to the “weight” for the kth term in
the polynomial. blending ,(¢) is defined as follows:

blending; (1) = C(n, k)i*(1 — 1)"*
and C(n, k) is defined in turn as
n!
kl(n — k)!

In the case of the cubic polynomials that we have examined above, n = 3, and the blend-
ing functions are

C(n, k) =

blendingyz = (1 — 1)°
blending, 3 = 3t(1 — 1)

blending, 3 = 3t*(1 — 1)

blendings;z = r

One of the easiest ways to picture a cubic Bézier curve is algorithmically. The de
Casteljau algorithm shows how a Bézier curve is constructed recursively from the four con-
trol points. Consider points p, p1, P2, and p3 shown in Figure 2.57. Let p,,,, p,, denote a line
segment between p,, and p,,. First we find the midpoint py; of py, p;, the midpoint p;, of
P1» P2» and the midpoint p,3 of p,, p3. We then find the midpoint pg;, of po;, P12 and the
midpoint p,3 of p1o, Pa3- Finally, we draw pg;», Pi23 and find its midpoint pg;»3. This point
will be on the Bézier curve. The same procedure is repeated, based on initial points

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 111$

2.7 Vector Graphics 111

Infinite recursion draws the curve.

p3
Figure 2.57 De Casteljau algorithm for drawing a
Bézier curve

Po> Po1> Poi2> and pg123 on one side and pg23, P123, P23, P3 on the other. This goes on recur-
sively, theoretically down to infinite detail—or, more practically, down to pixel resolution—
thereby tracing out the Bézier curve. Analyzing this recursive procedure mathematically is
another method for deriving the Bernstein polynomials.

To conclude this section, it may be helpful to return to an intuitive understanding of
Bézier curves by considering their properties and looking at some examples as they com-
monly appear in drawing programs. Bézier curves have the following characteristics:

» Bézier curves can be based on n-degree polynomials of degrees higher than three.
However, most drawing programs create Bézier curves from cubic polynomials, and

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 112$

112 Chapter 2 Digital Image Representation

Supplement on pen
tool and curve
drawing:

hands-on
worksheet

thus the curves are defined by four control points. The number of control points is
always one more than the degree of the polynomial.

* A Bézier curve with control points pg, p1, P2, and p3 passes through the two endpoints
Po and p3 and is approximated through the two interior control points p; and p,. The
lines between p and p; and between p, and p; are tangent to the curve.

* Bézier curves are fairly easy to control and understand in a drawing program because
the curve will always lie within the convex hull formed by the four points. The con-
vex hull defined by a set S of points is the polygon formed by a subset of the points
such that all the points in S are either inside or on an edge of the polygon.

* The mathematics of moving, scaling, or rotating a Bézier curve is easy. If the opera-
tion is applied to the control points, then the curve will be appropriately transformed.
(Note that transformations such as moving, scaling, and rotating are called affine
transformations. An affine transformation is one that preserves colinearity and ratios
of distances among points.)

Figure 2.58 shows the stepwise creation of a Bézier curve as it is done using the pen tool
in programs such as Illustrator or GIMP. We’ll have to adjust our definition of control
points in order to describe how curves are drawn in these application programs. The con-
trol points defined in the Bézier equation above are p, pi, P>, and p3. We need to identify
another point that we’ll call p .. To make a curve defined by the mathematical control points
Pos P1, P2, and p3, you click on four physical control points pg, p1, p2, and p,. as follows:

* Click at point pg, hold the mouse down, and drag to point p;.
* Release the mouse button.

With pen tool in application programs like Illustrator or GIMP:
Step 1. Click p0, holding down mouse button.

Step 2. Drag to pl. Let go mouse button.

Step 3. Click p3, holding down mouse button.

Step 4. Drag to px and doubleclick to end curve.

pl pl
pX p2 p2 pl
po px
p0 p3
p3
p3
p2

p2 pO

pl px

px p3
p3 pl p2
pO
pO
pX

Figure 2.58 Examples of Bézier curves drawn in, for example, Illustrator or
GIMP

o


BezierCurves&PenTool.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 113$

2.8 Algorithmic Art and Procedural Modeling 113

* Move the cursor to your desired endpoint p3, click, and pull to create a “handle” that
ends at p,.
* Release the mouse button.

As you pull from pj to p,, a handle extends equidistant from p3 but in the opposite direc-
tion from p, ending in control point p,. Notice that both p and p3 will have handles that
can be pulled. The handles appear and disappear as you select and deselect endpoints. After
you create the initial curve, you can modify the curve’s shape by pulling on the handles.
The length of the line segments py, p; and p,, p3 define how strongly the curve is pulled
toward p; and p,, respectively. Their orientations determine the direction of the curves on
each side.

Supplement on

2-8 ALGORITHMIC ART AND PROCEDURAL algorithmic art:
MODELING

So far, we’ve talked about two types of digital images: bitmap graphics and vector graph-
ics. Bitmaps are created by means of either digital photography or a paint program. Vector
graphic images are created by vector drawing programs. Paint and vector drawing pro-
grams allow you to work with powerful tools at a high level of abstraction. However, if  interactive tutorial
you’re a computer programmer, you can also generate bitmaps and graphical images di-
rectly by writing programs at a lower level of abstraction. To “hand-generate” and work
with bitmaps, you need to be adept at array manipulation and bit operations. To work at a
low level of abstraction with vector graphics, you need to understand the mathematics and
algorithms for line drawing, shading, and geometric transformations such as rotation, dis-
placement, and scaling. (These are topics covered in graphics courses.) In this book, we
emphasize your work with high-level tools for photographic, sound, and video processing;
vector drawing; and multimedia programming. However, we try to give you the knowledge
to descend into your image and sound files at a low level of abstraction when you want to
have more creative control.
There is a third type of digital image that we will call algorithmic art. (It is also referred
to as procedural modeling.) In algorithmic art, you create a digital image by writing a com-
puter program based on some mathematical computation or unique type of algorithm, but
the focus is different from the type of work we’ve described so far. In vector graphics (as-
suming that you’re working at a low level of abstraction), you write programs to generate
lines, three-dimensional images, colors, and shading. To do this, you first picture and then
mathematically model the objects that you are trying to create. In algorithmic art, on the
other hand, your focus is the mathematics or algorithm rather than on some preconceived
object, and you create an image by associating pixels with the results of the calculation.
The image emerges naturally as a manifestation of the mathematical properties of the cal-
culation or algorithm.
One of the best examples of algorithmic art is fractal generation. A fractal is a graphi-
cal image characterized by a recursively repeating structure. This means that if you look at
the image at the macro-level—the entire structure—you’ll see a certain geometric pattern,
and then when you zoom in on a smaller scale, you’ll see that same pattern again. For frac-
tals, this self-embedded structure can be repeated infinitely.
Fractals exist in natural phenomena. A fern has the structure of a fractal in that the
shape of one frond of a fern is repeated in each of the small side-leaves of the frond.

o


Spiral.htm

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 114$

114 Chapter 2 Digital Image Representation

Supplement on
Koch snowflake:

(G

programming
exercise

3

Figure 2.59 Natural fractal structures

Similarly, a cauliflower’s shape is repeated in each subcluster down to several levels of
detail (Figure 2.59).

You can create a fractal with a recursive program that draws the same shape down to
some base level. This is an example of algorithmic art because the self-replicating structure
of the image results from the recursive nature of the algorithm. The Koch snowflake,
named for Swedish mathematician Helge von Koch, is an example of a fractal structure that
can be created by means of a recursive program. Here’s an explanation of how you can
draw one by hand. First, draw an equilateral triangle. Then draw another triangle of the
same size, rotate it 180°, and align the two triangles at their center points. You’ve created a
six-pointed star. Now, consider each point of the star as a separate equilateral triangle, and
do the same thing for each of these. That is, create another triangle of the same size as the
point of the star, rotate it, and align it with the first. You’ve just created six more stars, one
for each point of the original star. For each of these stars, do the same thing that you did
with the first star. You can repeat this to whatever level of detail you like (or until you can’t
add any more detail because of the resolution of your picture). If you fill in all the trian-
gles with a single color, you have a Koch snowflake (Figure 2.60).

Another recursively defined fractal structure is Sierpinski’s gasket (Figure 2.61), which
is built in the following manner: Begin with an equilateral triangle with sides that are one
unit in length. The triangle is colored black (or whatever solid color you like). Create a
white triangle inside the first one by connecting the midpoints of the sides of the original
triangle. Now you have three small black triangles and one white one, each with sides
half the length of the original. Subdivide each of the black triangles similarly. Keep
doing this to the level of detail your resolution allows. This can easily be described by a
recursive algorithm.

o


KochSnowflakeProgrammingAssignment.pdf

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 115$

2.8 Algorithmic Art and Procedural Modeling 115

(X 8.8
AX kX

Figure 2.60 Koch’s snowflake, a recursively defined fractal

A L A6

Figure 2.61 Sierpinski’s gasket

GS| DE: Benoit Mandelbrot was born in \
Poland in 1924 and divided his academic and
professional career in mathematics between
France and the United States. Admired for his
eclectic, interdisciplinary approach to research,
Mandelbrot worked in disciplines spanning
statistics, graphics, linguistics, physics, and

Another very intriguing type of fractal was discovered by Benoit
Mandelbrot in the 1970s. Mandelbrot’s method is interesting in that
the mathematical computation does not explicitly set out to create a

fractal of infinitely repeating shapes; instead, a beautiful and com- economics. He coined the word “fractals” to
plex geometry emerges from the nature of the computation itself. describe both shapes and behaviors that are self-
The Mandelbrot fractal computation is based on a simple itera- similar at varying levels of detail. His cxicnsive

work in fractals defined a new geometry where
mathematics meets aesthetics.

tive equation.

KEY EQUATION

A Mandelbrot fractal can be computed by the iterative equation
f@=2+c¢

where z and ¢ are complex numbers. The output of the ith computation is the input z to
the i + 1st computation.

Complex numbers have a real and an imaginary number component. For ¢, we will call
these components c, and c;, and for z the components are z, and z;.

c=c¢ tciandz = z, + ziwhereiis V —1

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 116$

116 Chapter 2 Digital Image Representation

Supplement on
Mandebrot and
Julia fractals:

programming
exercise

interactive tutorial

To create a Mandelbrot fractal, you relate values of ¢ on the complex number plane to pixel
positions on the image bitmap, and you use these as initial values in computations that de-
termine the color of each pixel. ¢, corresponds to the horizontal axis on the plane, and c;
corresponds to the vertical axis. The range of —2.0 to 2.0 in the horizontal direction and
—1.5to 1.5 in the vertical direction works well for the complex number plane. Let’s assume
that we’re going to create a fractal bitmap that has dimensions of 1024 X 768 pixels. Given
these respective dimensions for the two planes, each pixel position (x, ¥) is mapped propor-
tionately to a complex number (c,, ¢;) (Figure 2.62).

1024 x 768 pixel bitmap

For each pixel,
map the pixel position ¢ Pixel position (256, 307)
(X,y) proportionately

to a position (cr, ci) on the
complex number plane.

Maps to

Complex number ¢ = (cr, ci)
used in computation

e (—1.0,-0.3) on complex number
plane. Thus, cr =-1.0 and ci =-0.3
to initiate computation for pixel
position (256,307) )

[-1.5, 1.5]

ci=

~———cr=[-20, 20 ——>

Figure 2.62 Mapping from pixel plane to complex number plane for
Mandelbrot fractal

To compute a pixel’s color, you iteratively compute f(z) = 2> + ¢, where ¢ initially is
the complex number corresponding to the pixel’s position, and z is initially 0. After the first
computation, the output of the ith computation is the input z to the i + 1st computation. If,
after some given maximum number of iterations, the computation has not revealed itself as
being unbounded, then the pixel is painted black. Otherwise, the pixel is painted a color re-
lated to how many iterations were performed before it was discovered that the computation
was unbounded. The result is a Mandelbrot fractal like the ones shown in Figure 2.63.

Algorithm 2.5 describes the Mandelbrot fractal calculation. We have not shown in this
pseudo-code how complex numbers are handled, nor have we been specific about the ter-
mination condition. For details on this, see the related programming assignment.

o


MandelbrotFractalProgrammingAssignment.pdf
MandelbrotFractal.htm

M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 117$

2.8 Algorithmic Art and Procedural Modeling 117

Figure 2.63 Mandelbrot fractals, the one on right “zoomed in”

aLcormim 25 [

algorithm mandelbrot_fractal
/*Input: Horizontal and vertical ranges of the complex number plane.
Resolution of the bitmap for the fractal.
Color map.
Output: A bitmap for a fractal.*/
{
/*constant MAX is the maximum number of iterations* /
for each pixel in the bitmap {

map pixel coordinates (x,y) to complex number plane coordinates (cr, ci)

num_iterations = 0

z=0

while num_iterations < MAX and not_unbounded* {

z=7>+¢
num_iterations = num_iterations + 1

1
/*map_color(x,y) uses the programmer’s chosen color map to determine the color of
each pixel based on how many iterations are done before the computation is found to
be unbounded*/

if num_iterations == MAX then color(x,y) = BLACK

else color(x,y) = map_color(num_iterations)

1

1

/*We have not explained not_unbounded here. For an explanation of the termination
condition and computations using complex numbers, see the programming assign-
ment related to this section.*/




M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 118$

118 Chapter 2 Digital Image Representation

A variation of the Mandelbrot fractal, called the Julia fractal, can be created by relating
z rather than c to the pixel’s position and appropriately selecting a value for ¢, which re-
mains constant for all pixels. Values for c that create interesting-looking Julia fractals can
be determined experimentally, by trial and error. Each different constant ¢ creates a fractal
of a different shape.

Figure 2.64 Three Julia fractals using different starting values for ¢

EXERCISES

1. a. What type of values would you expect for the DCT of the enlarged 8 pixel X 8 pixel
image below (i.e., where do you expect nonzero values)? The grayscale values are
given in the matrix. Explain your answer.

Figure 2.65

255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255
255 155 155 255 255 | 200 | 255

S| O O O O o o ©

b. Compute the values. You can use computer help (e.g., write a program, use
MATLAB, etc.)

2. Say that your 1-CCD camera detects the following RGB values in a 3 pixel X 3 pixel
area. What value would it record for the three pixels that are in boldface, assuming the
nearest neighbor algorithm is used? (Give the R, G, and B values for these pixels.)

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 119$

G =240 | R = 255 G =239 R =244 | G =236
B=238 | G=229 | B =224 G =230 | B=222
G =244 | R = 255 G =238 R =250 | G =236
B =230 | G =226 B = 222 G =232 | B=228
G =244 | R =255 G =238 R =250 | G =236

3. Answer the following questions based on the diagram below.

o

P P P F &

1.0

09

0.8

0.7

0.6

0.5
0.4

A \
I1luminant C

0.3

0.2
0.1F

0 | | | | | | | | |

0 01 02 03 04 05 06 07 08 09 1.0

Figure 2.66
a. What color is point A?
b. How would you find the dominant wavelength of this color?
c. What does the line segment between A and C represent?
d. How would you determine the saturation of the color at point A?

Pixel dimensions, resolution, and image size, hands-on exercise, online

DCT, interactive tutorial, worksheet, programming exercise, and mathematical mod-
eling exercise, online.

Aliasing in sampling, interactive tutorial and worksheet, online
Aliasing in rendering, interactive tutorial and worksheet, online
Line drawing, interactive tutorial and programming exercise, online
Color model conversions, programming exercise, online

XYZ color and the CIE chromaticity diagram, mathematical modeling exercise and
programming exercise, online

119

o



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page 120$

120

Curve drawing, interactive tutorial, worksheet, and hands-on exercise, online

12. Algorithmic art, interactive tutorial, online

13. Koch snowflakes, programming exercise, online

14. Mandelbrot and Julia fractals, interactive tutorial and programming exercise, online
APPLICATIONS

I. Examine the specifications on your digital camera (or the one you would like to have),
and answer the following questions:

* Does your camera allow you to choose various pixel dimension settings? What set-
tings are offered?

* How many megapixels does the camera offer? What does this mean, and how does
it relate to pixel dimensions?

* What type of storage medium does the camera use? How many pictures can you
take on your storage medium? This will depend on the size of the storage medium
and the size of the pictures. Explain.

* How can you get your pictures from the camera to your computer?

* What technology does your camera use for detecting color values?

2. What are the pixel dimensions of your computer display? Can you change them? If
so, change the pixel dimensions and describe what you observe about the images on
your display. Explain.

3. Examine the specifications of your printer (or the one you would like to have). Is it

inkjet? Laser? Some other type? What is its resolution? How does this affect the
choices you make for initial pixel dimensions and final resolution of digital images
that you want to print?

Examine the features of your digital image processing program, vector graphic
(i.e., draw), and/or paint programs and try the exercises below with features that
are available.

Open the applications program or programs and examine the color models that they
offer you. Which of the color models described in this chapter are offered in the ap-
plication program? Are there other color models available in the application program
that are not discussed in this chapter? Examine the interface—sometimes called a
“color chooser.” Look at the Help of your application program. How is color saved by
the application program? If you specify color in HLS rather than RGB, for example,
using the color chooser, is the internal representation changing, or just the values you
use to specify the color in the interface?

Do some experiments with the color chooser of your image processing, paint, or draw
program in RGB mode to see if you can understand what is meant by the statement
“the RGB color space is not perceptually uniform.”

Additional exercises or applications may be found at the book or author’s websites.



M02 BURG5802 01 SE C02.QXD 7/2/08 12:04 PM Page lle\%

REFERENCES

Print Publications

Briggs, John. Fractals: The Patterns of Chaos. New York: Simon & Schuster/A
Touchstone Book, 1992.

Foley, James D., Steven K. Feiner, John F. Hughes, and Andries Van Dam. Computer
Graphics: Principles and Practice. 2nd ed. Boston: Addison-Wesley, 1996.

Hargittai, Istvan, and Clifford A. Pickover. Spiral Symmetry. Singapore: World Scientific,
1992.

Hearn, Donald, and M. Pauline Baker. Computer Graphics with OpenGL. 3rd ed. Upper
Saddle River, NJ: Pearson/Prentice-Hall, 2003.

Hill, E. S., Jr. Computer Graphics Using Open GL. 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 2001.

Hofstadter, Douglas R. Godel, Escher, Bach: An Eternal Golden Braid. New York: Basic
Books, 1979. (Reprinted with a new preface in 1999.)

Livio, Mario. The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number.
New York: Broadway Books, 2002.

Pickover, Clifford. The Pattern Book: Fractals, Art, and Nature. Singapore: World
Scientific, 1995.

Pickover, Clifford. Chaos and Fractals: A Computer Graphical Journey. Elsevier, 1998.

Pokorny, Cornel. Computer Graphics: An Object-Oriented Approach to the Art and
Science. Franklin Beedle and Associates, 1994.

Rao, K. R., and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications.
San Diego: Academic Press, 1990.

121





