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OBJECTIVES FOR CHAPTER 1
• Understand the difference between analog and discrete phenomena.
• Understand how images and sound can be represented as sinusoidal waveforms.
• Understand how sinusoidal waveforms model sound waves of a given frequency.
• Understand how sinusoidal functions can be summed to create more complex

waveforms.
• Understand how undersampling leads to aliasing.
• Understand how quantization leads to quantization error.
• Understand and be able to apply the equation for signal-to-noise ratio.
• Be able to calculate the storage space needed for digital images, audio, and video

files given basic parameters.
• Know the storage capacity of common storage media.
• Understand basic concepts of digital data communication.
• Understand the various usages of the term bandwidth.
• Know how to compute maximum data rate given bandwidth and number of

different signal values that can be communicated.
• Understand the relationship between bit rate and baud rate.
• Be able to perform run-length encoding, entropy encoding, and arithmetic

encoding.
• Be familiar with common compression algorithms and codecs.

1.1 INTRODUCTION

1.1.1 The Approach of this Book
Something caused you to open this book. Maybe this book is the required text for a course
you’re taking, a course such as Digital Media or Multimedia Systems. Maybe you’ve been
dabbling in photographic, sound, or video processing on your own and have gotten curious
about how your tools actually work. Maybe you’re a mathematician, engineer, or physicist
who finds digital media a fascinating arena in which to apply your discipline. Maybe
you’re a musician, a graphic artist, or a professional in some field that requires the support
of digital media, and you want to know more. If science and mathematics have always
interested you, you may be curious to look behind the scenes, expecting that a deeper
understanding of your digital media tools will enhance your creative powers.

Whatever your reason for opening this book, we assume that the greatest motivation for
most people interested in digital media is the excitement of creation. Digital media is mul-
timedia driven by computers. You can see it, hear it, maybe even touch it, and certainly in-
teract with it. It becomes even more exciting when the images, sound, and motion are the
work of your own hands and brain. What draws most people to a study of digital media is
the satisfaction of making something that communicates, entertains, or teaches.

I am an instrument in the shape of a woman
trying to translate pulsations into images....
—Adrienne Rich, “Planetarium”1

CHAPTER

4
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1.2 Analog to Digital Conversion 5

With this goal in mind, we’ve chosen the topics in this book by considering the specific
activities undertaken in digital media work—choosing color modes, compressing files,
identifying aliased frequencies, filtering, transforming, and creatively editing. However,
rather than present step-by-step methods related to specific application programs, we pres-
ent the mathematical and algorithmic procedures upon which the tools are built. We at-
tempt to make the explanations simple, straightforward, and relevant to hands-on activity.
Procedures and algorithms are illustrated with interactive demos and mathematical model-
ing exercises that reinforce the text. We believe that the science behind digital media can be
just as fascinating as the end product, and that understanding the science not only will in-
crease your creative powers but also will make the creative process more intellectually sat-
isfying. Dig in and see what you discover.

1.1.2 Where to Begin
So where do we begin? This book is organized around three main media—digital imaging,
audio, and video—woven together at the end with multimedia programming. Topics in
each chapter are motivated by activities done in digital media application programs such as
Photoshop, Premiere, Final Cut, Audition, Sound Forge, Logic, Reason, Illustrator, Flash,
and Director, but they are presented from a mathematical or conceptual perspective.

Chapter 1 covers concepts that are relevant to more than one medium. In particular, the
digitization process of sampling and quantization is introduced, to be revisited in the con-
text of image and sound in later chapters. Analog-to-digital conversion is where it all be-
gins. We then move on to fundamentals of data communication and data storage. A survey
of compression methods covers concepts relevant to all media. We conclude the chapter
with an overview of standards and standardization organizations. Accompanying the chap-
ter are interactive tutorials introducing you to mathematical modeling tools that will help
you visualize and experiment with concepts.

There’s a lot of material in this chapter. You’ll probably find some of it easy and you’ll
be able to skim through it quickly. Some you can note as reference material to look back at
later when you need the information. Some of the material is more challenging and may not
sink in entirely until you read on and work more with your tools. A lot of the material is re-
inforced in later chapters, as it applies to a particular medium—images, sound, and video.
Focus on what interests you most, and don’t forget to look at the interactive tutorials and
learning supplements online.

1.2 ANALOG TO DIGITAL CONVERSION

1.2.1 Analog versus Discrete Phenomena
Analog phenomena are continuous—like a steady stream of water, a line on a graph, or a
continuously rotating dial on a radio. With analog phenomena, there is no clear separation
between one point and the next; in fact, between any two points, an infinite number of other
points exist. Discrete phenomena, on the other hand, are clearly separated. There’s a point
(in space or time), and then there’s a neighboring point, and there’s nothing between the
two. A dripping faucet is a discrete phenomenon, whereas the water in a running tap is
continuous and thus analog. Many of our sensory perceptions come to us in analog form
(although some may consider this debatable, perhaps even a philosophical question). A live
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6 Chapter 1 Digital Data Representation and Communication

orchestra presents music to us in analog form, as continuous sound waves. A standard mi-
crophone is an analog device, detecting and recording sounds over time and transmitting
them as a continuous wave of varying voltages.

Converting the continuous phenomena of images, sound, and motion into a discrete
representation that can be handled by a computer is called analog-to-digital conversion.
You may wonder what the advantages are of digital over analog data. Photographs,
music recordings, and television have been around for a long time without the benefit of
being digitized, so why should we change now? Why did the consumer market switch
so willingly from vinyl record albums to compact disks? Why should you buy a digital
camera if you have a perfectly good analog one? What could motivate you to switch to
digital television?

There are, in fact, quite a few advantages to digital media. It may seem that analog
data—with infinite values that can run smoothly and continuously from one to the next—
would be more precise and give better quality in photographs, music, and videos. But as
storage media have increased in size and communication channels have increased in data
rate, it has become possible to increase the resolution of digital images, audio, and video.
This means that a digitized picture and sound can now be captured in fine detail. Digital
data also has an advantage in the way that images and sound are communicated. Analog
data communication is more vulnerable to noise than is digital, so it loses some of its qual-
ity in transmission. With digital data, which is communicated entirely as a sequence of 0s
and 1s, error-correcting strategies can be employed to ensure that the data is received and
interpreted correctly. Moreover, digital data can be communicated more compactly than
analog. This may seem counter-intuitive. You might think that a digitally encoded televi-
sion program, for example—in the primitive language of 0s and 1s—would require much
more data than the same program broadcast in analog form. However, excellent compres-
sion algorithms exist for digital data that significantly reduce the amount of data without
sacrificing quality. The result is that digital cable television transmissions are actually able
to divide their bandwidth among numerous broadcasts, offering the consumer both a vari-
ety of programming and high quality picture and sound. How this all happens should
become clearer to you as you learn more about analog-to-digital conversion, digital data
communication, and compression algorithms.

1.2.2 Image and Sound Data Represented 
as Functions and Waveforms

The two primary media in digital media are images and sound. They are primary in the
sense that the two are combined to produce video. Haptic output—based on the sense of
touch—is sometimes present in digital media but is not yet common. Both images and
sound can be represented as functions, and we can visualize these functions by means of
their corresponding graphs. (If you don’t need this refresher on the basic physics and math-
ematics of sinusoidal functions and waves, you can skip this section.)

Sound, for example, is a one-dimensional function—that is, a function with one variable
as input. If we think of sound as a continuous phenomenon, then we can model it as a
continuous function where x is time and y is the air pressure amplitude.

The essential form of the function representing sound is sinusoidal, which means that it
has the shape of a sine wave. In this book, we assume that you have some background in
trigonometry, but let’s review the sine function briefly. Assume you have a triangle with
vertices A, B, and C. We give the name to the angle at vertex V, for any vertex V. An∠V

y = f(x)
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1.2 Analog to Digital Conversion 7

angle can be measured in degrees, abbreviated as °, or radians, abbreviated as rad. The
relationship between radians and degrees is as follows:

C B

A

a

h

a

c

sin(a)  = c�h
cos(a) = a�h

Figure 1.1 Sine and cosine functions
defined within a right triangle

KEY EQUATION

Let r be the size of an angle measured in radians, and let d be this size
measured in degrees. Then

r

d
=

p

180

In this book, we will assume all angles are in radians.
Assume is a right angle, which means that it is of size , as pictured in Figure 1.1.

A triangle that contains an angle of size is called a right triangle. The side opposite the
right angle is called the hypotenuse, whose length we call h. Consider either of the two non-
right-angles in the triangle—say, for our example, , which has size . The side opposite

is called the opposite side with regard to . Say that this side has length c. The other
side is the adjacent side with regard to . Assume that the side adjacent has size a. Then
the sine and cosine of are defined by the angle’s size as follows:

We call sines and cosines sinusoidal functions.
The previous definition defines the sine and cosine functions for angles that are less than
. We can generalize this definition for angles of any size by looking at angles at the cen-

ter of a Cartesian coordinate system. In a Cartesian coordinate system, values increase hor-
izontally from left to right across the x-axis and vertically from bottom to top up the y-axis.
(x, y) denotes a point in this Cartesian space. x and y are called the coordinates of the point.
The place where the two axes cross is called the origin, at point (0, 0). Consider a circle of
radius 1 around the origin, called a unit circle (Figure 1.2). Note that by the Pythagorean

p>2

cos (a) = a>h
sin (a) = c>h

∠C
∠C

∠C∠C
a∠C

p>2 p>2∠B

P

Q

x-axis

y-axis

a

Figure 1.2 Sine and cosine functions
defined within a unit circle
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8 Chapter 1 Digital Data Representation and Communication

theorem, the equation for a unit circle is . Let point P be at position (1, 0),
which is located on the x-axis. For every point Q on the unit circle, you have an angle con-
necting P to the origin and then to Q. Let the size of the angle be . As you move Q around
the unit circle counterclockwise, goes from 0 to . Notice that when Q returns to its ini-
tial position on the x-axis, the angle can be considered to be of size 0 or . In fact, it is
angle , k being the number of times you have gone around the unit circle. (k is positive
if you move counterclockwise and negative otherwise.) Because Q lies on the unit circle,
Q’s x and y coordinates give the sine and cosine, respectively, of the angle created by P, the
origin, and Q. That is, and . For angles of size where is greater
than or less than 0 and , the definitions of the sine and cosine functions
generalize as follows:

If and k is an integer then

Thus, the sine and cosine functions are considered periodic functions in the sense that their
values cycle in a regular pattern, as shown in Table 1.1.

 cos(u) = cos(a + 2pk) = cos(a)

 sin(u) = sin(a + 2pk) = sin(a)
u = a + 2pk

u = a + 2pk2p
uu cos(a) = x sin(a) = y

2pk
2p

2pa

a

x2
+ y2

= 1

TABLE 1.1 Sine Function

Angle in Radians Angle in Degrees Sine of Angle

0 0 0

30 1 2

45

60

90 1

120

135

150 1 2

180 0

210

225

240

270

300

315

330

360 02p

-1>211p>6
- 22>27p>4
- 23>25p>3

-13p>2
- 23>24p>3
- 22>25p>4

-1>27p>6
p

>5p>6
22>23p>4
23>22p>3

p>2
23>2p>3
22>2p>4
>p>6

We can visualize this pattern through a graph of the values. In this graph, the x-axis rep-
resents the size of the angle and the y-axis represents the sine of the angle. This shape is re-
ferred to as a sine wave, as shown in Figure 1.3. (The graph of the cosine is also shown in
the figure.) We refer to this as a simple sine wave when we wish to emphasize that it is a sin-
gle sine function rather than the sum of two or more.
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1.2 Analog to Digital Conversion 9

Now let’s see how sinusoidal functions relate to waves and thus to sound and images.
Sound is a good medium with which to begin this discussion because it is easy to under-
stand as an analog phenomenon and to think of as a wave.

You’re probably familiar with the concept of sound waves as a physical phenomenon,
but this review may be useful since sinusoidal waves are an important abstraction in digital
media, relevant to images as well. First, sound is a mechanical wave, which means that it
results from the motion of particles through a transmission medium—for example, the mo-
tion of molecules in air. Because sound is a mechanical wave, it has to have something to
move through; sound cannot be transmitted through a vacuum.

The movement associated with a sound wave is initiated by a vibration. Imagine one of
the strings inside a piano vibrating after one of the piano’s soft hammers hits it. The air
molecules next to the string are set in motion, radiating energy out from the vibrating
string. For simplicity, let’s just picture a single “wave” moving from left to right. As the
string vibrates to the right, the molecules closest to the string are pushed to the right, mov-
ing closer to the molecules next to them, which in a chain reaction move closer to the mol-
ecules next to them, and so forth. When molecules are pressed closer to their neighbors, air
pressure rises. When the piano string moves back to the left, the molecules next to the
string have space to spread out and move to the left as well, so the pressure between these
molecules and the molecules to their right is reduced. This periodic changing of air
pressure—high to low, high to low, etc.—radiates out from the string from left to right. (See
Figure 1.4.)

–1.5
0 5 10 15 20 25

–1.0

–0.5

0

0.5

1.0

1.5
Sine Cosine

Figure 1.3 Graphs of sine and cosine waves

Areas of high pressure

Figure 1.4 Changing air pressure caused by vibration of air
molecules
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10 Chapter 1 Digital Data Representation and Communication

If you can visualize a sound wave as we just described it above, you can see that the
motion of the air molecules is back and forth from left to right, the same direction in which
the wave is radiating out from the string. A wave of this type is called a longitudinal wave,
defined as a wave in which the motion of individual particles is parallel to the direction in
which energy is being transported. Sound is a longitudinal mechanical wave.

The sound wave in Figure 1.5. is a graphical and mathematical abstraction of the phys-
ical phenomenon of sound. Prefix definitions for units are given in the table below. The
graph represents represents the periodic change of air pressure. First the pressure increases
as molecules are pushed closer together, shown by the upward arc in the graph. Then the
pressure decreases as the molecules move apart, shown by the downward arc. These
changes happen over time, so the x-axis in the graph represents time, while the y-axis rep-
resents air pressure.

0 10 20 30 40
–3

–2

–1

0

1

2

3

Time (milliseconds)
A

ir
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re
ss

ur
e 

am
pl

itu
de

Figure 1.5 A single-frequency (440 Hz) tone with no overtones,
represented as a waveform

KEY EQUATIONS

TABLE 1.2 Prefixes for Numbers

nano- = 10-9

micro- = 10-6

milli- = 10-3

A wave is said to be periodic if it repeats a pattern over time. The pattern that is
repeated constitutes one cycle of the wave. A wavelength is the length (in distance) of one
complete cycle. The frequency of a wave is the number of times a cycle repeats per unit
time, which in the case of sound corresponds to the rate at which the air molecules are
vibrating. The frequency of a sound wave is measured in cycles per second, or Hertz.
Common prefixes and frequency measurements are summarized in Tables 1.2 and 1.3.
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1.2 Analog to Digital Conversion 11

KEY EQUATIONS

TABLE 1.3 Abbreviations for Frequency
or Sampling Rate

Assume the following abbreviations:

Hertz Hz

kilohertz kHz

megahertz MHz

second s

millisecond ms

microsecond

nanosecond ns

1 MHz = 1,000,000 Hz

1 kHz = 1000 Hz

1 Hz = 1 cycle/s

�s

The period of a wave is the amount of time it takes for one cycle to complete. Period and
frequency are reciprocals of each other.

KEY EQUATION

Let T be the period and f be the frequency of a sinusoidal wave. Then

and

 f = 1>T
 T = 1>f

The height of a wave is called its amplitude.
To create a sine function representing a sound wave of frequency f Hz, you must convert

f to angular frequency first. The relationship between the two is as follows:

KEY EQUATION

Let f be the frequency of a sine wave measured in Hz. Let be the equivalent
angular frequency measured in radians/s. Then

v = 2pf

v

Thus, the sine function representing a sound wave with a frequency of 440 Hz is
This sine wave is pictured in Figure 1.5.

A graphical representation of sound in the form of a wave tells us something about the
sound without our having to hear it. If the wave is completely regular like the one in Figure 1.5,

sin(880p).
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then the sound is a single-pitch tone, like a single musical note with
no overtones. The amplitude of a wave corresponds to how loud the
sound is; the larger the amplitude, the louder the sound. 
The frequency of a wave corresponds to the pitch of the sound; the
higher the frequency, the higher-pitched the sound.

Figure 1.5 shows a simple waveform corresponding to an
idealized musical tone at a single frequency. A single-frequency

tone takes the form of a sine function; that is, it is a sinusoidal
waveform. Few sounds in nature are this pure in form. Then how are more complex
sounds created and represented? It is possible to add a number of simple waveforms to
get a more complex one. Figure 1.6 shows the result of adding the musical notes C, E,
and G together. The sum of the three sound waves creates the harmony of the three notes
played simultaneously.

ASIDE: Amplitude and loudness are not ex-
actly the same thing. Amplitude is a measure of
air pressure while loudness is a subjective per-
ception of sound. The two are related, however,
in that higher amplitudes are generally per-
ceived as louder sounds.

Musical note C

Musical note E

Musical note G

Musical note C, E, and G

Figure 1.6 Adding sound waves

12 Chapter 1 Digital Data Representation and Communication
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We can do this process in reverse. That is, we can take a complex
waveform and break it down mathematically into its frequency
components. The method for doing this is called the Fourier trans-
form. Fourier analysis shows that any periodic signal can be decom-
posed into an infinite sum of sinusoidal waveforms. The simple
sinusoidal waves are called the frequency components of the more
complex wave. The Fourier transform makes it possible to store a
complex sound wave in digital form, determine the wave’s frequency components, and fil-
ter out components that are not wanted. Filtering can be done in order to improve audio
quality or to compress a digital audio file. These concepts and procedures will be discussed
in more detail in Chapter 4.

In Chapter 2, you will see that sinusoidal waveforms can also be used to represent chang-
ing color amplitudes in a digital image. Look at the image in Figure 1.7. Imagine that each
point in the picture can be represented by a number—its grayscale value. Grayscale values
range from 0 to 255 and correspond to shades of gray, black, and white. (We could also think
of 256 different colors. The point is that they are simply represented as numbers.) For the
moment, assume that the image is continuous, with an infinite number of points in each row
and column of the image. We’ll worry about digitization later. Assume that the grayscale
values vary smoothly from left to right, increasing and decreasing in a regular pattern. Now
take just one horizontal line of grayscale values from that image. If the grayscale values are
graphed over space, we get the sine wave pictured in Figure 1.8. The values in the vertical
direction could be graphed similarly, as a one-dimensional waveform. By extension, we
could graph the values taken from both the x and y directions on the image, representing the
grayscale values as amplitudes—that is, representing them by their height above the image
plane. In this sense, the values in the image, when graphed over the spatial domain, define a
two-dimensional waveform, as pictured in Figure 1.9. (The shading of the waveform in this
figure is only to help you see its contour better. It is the shape that is significant.) We’ll re-
turn to the concept of images as waveforms in more detail in Chapter 2.

Viewing a sound or an image as a waveform underlines the continuous nature of the data.
The wave varies smoothly across time or space. There are an infinite number of points be-
tween every two points we might choose. How, then, do we capture this information in a com-
puter? We have an infinite number of points of information to deal with, and that’s too much
data for a computer to handle. Thus, the first problem to be tackled in digital media is trans-
forming analog information to a discrete form by means of analog-to-digital conversion.

ASIDE: Jean Baptiste Joseph Fourier was an
18th century French mathematician whose analy-
ses of periodic functions (i.e., sines and cosines)
have been fundamental to advances in engineer-
ing and digital signal processing.

1.2 Analog to Digital Conversion 13

Figure 1.7 Grayscale image,
smooth gradient
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Figure 1.8 Sine wave corresponding
to one line of grayscale values across
the image to the left
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14 Chapter 1 Digital Data Representation and Communication

Regardless of the medium, analog-to-digital conversion requires the same two steps:
sampling and quantization. The first step, sampling, chooses discrete points at which to
measure a continuous phenomenon (which we will also call a signal). In the case of images,
the sample points are evenly separated in space. In the case of sound, the sample points are
evenly separated in time. The number of samples taken per unit time or unit space is called
the sampling rate or, alternatively, the resolution. The second step, quantization, requires
that each sample be represented in a fixed number of bits, called the sample size, or, equiv-
alently, the bit depth. The bit depth limits the precision with which each sample can be
represented. We will give simple examples of sampling and quantization in digital imaging
and sound in this chapter, and more detailed explanations in Chapters 2 and 4.

1.2.3 Sampling and Aliasing
What if you had a simple picture like the one in Figure 1.10 and you wanted to record it
digitally by taking a sample of the color at evenly spaced places in the horizontal and
vertical directions? In Figure 1.11, the sample areas are designated by rectangles which we
call sample blocks. At each sample block, a digital camera detects the color of the object

Figure 1.10 An image with 
a regular pattern

Horizontal pixel position
Vertical pixel position

G
ra

ys
ca

le
 v

al
ue

Figure 1.9 Two-dimensional waveform corresponding
to the grayscale image in Figure 1.7.

Figure 1.11 Squares denote areas where
samples are taken, called sample blocks.
(They are not part of the original image.)
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1.2 Analog to Digital Conversion 15

being photographed, recording the information in a pixel, short for picture element. To
recreate the scene from the samples taken in each sample block, by extrapolation you could
assume that the whole block was the color of the sample. If you took your samples in the
center of the blocks shown in Figure 1.11, you could recreate your picture correctly.
However, what if you sampled only every other block in a row, beginning on the left?
Reconstructing from those samples, you’d mistakenly think your entire picture was black.
This is a simple example of undersampling. Your sampling rate did not keep up with the
rate of change of the pattern in the image. Aliasing in a digital image arises from undersam-
pling and results in an image that does not match the original source—it may be blurred or
have a false pattern.

A similar situation can occur when you sample an audio wave. A sound wave can be rep-
resented by a sine wave such as the one shown in Figure 1.12. This is a pure tone with a fre-
quency of 637 Hz. Say that you sample this wave at a rate of 770 samples per second. That
would be a rate of 770 Hz. (Note that with regard to sampling rate, Hz means samples per
second, whereas with regard to a sound wave Hz means cycles per second.) Extrapolation
could be used to reconstruct a sine wave from the samples, resulting in the lower-frequency
wave shown in Figure 1.13. The circles represent the sample points. The lower-frequency
wave connected through the circles is the aliased frequency that results from reconstructing
the wave from too few samples. This is obviously not the original wave, and because the
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Figure 1.12 Audio wave at 637 Hz
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Circles are sample points

Figure 1.13 637 Hz audio wave sampled at 770 Hz
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16 Chapter 1 Digital Data Representation and Communication

wave reconstructed from the samples has a different frequency from the original, it won’t
sound the same.

Both these examples illustrate how aliasing occurs as a result of undersampling. In
general, aliasing is a situation where one thing takes the form or identity of another. Alias-
ing in digital images manifests itself as a lack of clarity, or a pattern in the digital image
that did not exist in the original; in text, it shows up as jagged edges on letters that ought
to be smooth; and in digital audio, it results in sound frequencies that did not exist in the
original.

The precise cause and nature of aliasing is captured in the Nyquist theorem, which spec-
ifies the sampling rate needed for a given spatial or temporal frequency. In simple terms,
the Nyquist theorem states that to guarantee that no aliasing will occur, you must use a
sampling rate that is greater than twice the frequency of the signal being sampled. The the-
orem is most easily understood as it relates to audio sampling, since we are already accus-
tomed to thinking of sound in terms of frequency. In the example above, the sound wave
being sampled has a frequency of 637 Hz. Thus, according to the Nyquist theorem, we need
to sample at more than twice this rate; that is, the sampling rate must be greater than
1274 Hz. This makes sense if we consider that we want to be able to extrapolate the maxi-
mum and minimum amplitudes of the wave from our samples. If we sampled exactly twice
per cycle and the samples were taken at the maximum and minimum points, this would
suffice for the extrapolation. (But notice that if we sampled twice per cycle but always at
the 0 points, we would not be able to recreate the wave from the samples.) Thus, intuitively
it makes sense that sampling more than twice per cycle should be enough. Anything less
than twice per cycle results in audio aliasing—that is, the digitized audio sounds different
from the original.

The Nyquist theorem applied to a single-frequency, one-dimensional wave is summa-
rized in the following equation:

KEY EQUATION

Let f be the frequency of a sine wave. Let r be the minimum sampling rate that
can be used in the digitization process such that the resulting digitized wave is not
aliased. Then

r is called the Nyquist rate.
r = 2f

ASIDE: Harry Nyquist was a physicist and
electrical and communications engineer. He was
born in Sweden and educated in the United
States, where he worked at Bell Laboratories.
He formulated his theorem regarding sampling
rate in 1928. The theorem was later proven and
extended by Claude Shannon in 1949. For this
reason, the theorem is sometimes referred to as
the Nyquist-Shannon theorem.

The Nyquist theorem applies equally to digital images, and is
illustrated by the image shown in Figure 1.10. This image has a
simple pattern with a regular frequency of repetition. If the sampling
rate does not keep pace with this rate of repetition, the pattern can-
not be reproduced faithfully. Most images are much more complex
than this simple pattern, but they have a spatial frequency. The con-
cept of spatial frequency and its relationship to the Nyquist theorem
and aliasing will be explained in more detail in Chapter 2. In both
digital imaging and digital sound, undersampling creates aliasing
and results in a digital reproduction of the image or sound that does
not look or sound exactly like the original analog version.
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1.2.4 Quantization, Quantization Error, 
and Signal-to-Noise Ratio

The second step in analog-to-digital conversion is quantization. We have seen that samples
must be taken at discrete points in time or space, but we haven’t yet considered how each
sample is represented in a computer.

For digital images, each sample represents a color at a discrete point in a two-
dimensional image. How many colors can we possibly represent in a digital image? The
number of colors possible is determined by the number of bits used to represent each
sample—that is, the sample size or bit depth (which, in the case of an image file, can also
be called the color depth). If only one bit is used per sample, then only two colors are
possible because one bit can take on only two values—0 or 1. If eight bits are used, then

colors are possible. (Eight bits are also used for grayscale.) If 24 bits are used,
then colors are possible. In general224

= 16,777,216
28

= 256

1.2 Analog to Digital Conversion 17

KEY EQUATION

Let n be the number of bits used to quantize a digital sample. Then the maxi-
mum number of different values that can be represented, m, is

m = 2n

The “different values” in the definition above correspond to color levels or sound ampli-
tudes. In an image processing program, you are offered a choice of color modes with im-
plicit bit depths. Clearly, the larger the bit depth, the more subtle the color changes can be
in a digitized image, but the file size also increases as the bit depth increases.

For digital audio, each sample represents the amplitude of a sound wave at a discrete point
in time. Common sample sizes are eight or 16 bits. Stereo CD-quality digital audio uses 
16 bits per sample in each of the two stereo channels, for a total of 32 bits per sample.

Sample size affects how precisely the value of a sample can be represented. In digital
sound, sample size affects how much you have to round off the amplitude of the wave when
it is sampled at various points in time. In digital images, this corresponds to how close the
digital image’s colors are to the original colors that it is supposed to represent. In digital
sound, sample size affects how much you have to round off the amplitude of the wave when
it is sampled at points in time. This is shown in Figure 1.14. The samples, which are taken
at evenly spaced points in time, can take on the values only at the discrete quantization
levels on the y-axis. A sample must be rounded to the closest discrete level. The difference
between its actual value and its rounded value (represented by pairs of points parallel to the
y-axis in the figure) is the quantization error.

The amount of error implicit in a chosen bit depth can be measured in terms of the
signal-to-noise ratio (SNR). Before looking at SNR specifically in the context of digital im-
aging and sound, let’s consider the general definition.

Signal-to-noise ratio can generally be defined as the ratio of the meaningful content of
a signal versus the associated noise. A signal is any type of communication—something a
person says to you, a digital signal sending an image file across a network, a message
posted on an electronic bulletin board, a piece of music being played from a cassette, etc.
The noise is the part of the message that is not meaningful; in fact, it gets in the way of the
message intended in the communication. You could use the term signal-to-noise ratio to
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18 Chapter 1 Digital Data Representation and Communication

describe communications in your everyday life. If you know someone who talks a lot but
doesn’t really convey a lot of meaning, you could say that he or she has a low signal-to-
noise ratio. Web-based bulletin board and chat groups are sometimes described as having a
low SNR—there may be quite a few postings, but not very much meaningful content. In
these first two examples, the noise consists of all the empty filler words. In the case of a
digital signal sent across a network, the noise is the electronic degradation of the signal. On
a piece of music played from cassette, the noise could be caused by damage to the tape or
mechanical imperfections in the cassette player.

More precise definitions of signal-to-noise ratio vary according to context. This might
be confusing if you see the term used differently in different places, so let’s differentiate be-
tween the two main usages.

• In analog data communication, the signal-to-noise ratio is defined as the ratio of the
average power in the signal versus the power in the noise level. In this context, think
of a signal being sent over a network connection compared to the extent to which the
signal is corrupted. This is related to the general usage of the term described above.
This usage of the term SNR applies to particular signals. The SNR depends on real-
time conditions.

• For a digitized image or sound, the signal-to-noise ratio is defined as the ratio of the
maximum sample value versus the maximum quantization error. In this usage of the
term, the ratio depends on the bit depth chosen for the signal, not upon real-time con-
ditions. Any signal encoded with a given bit depth will have the same ratio. This can
also be called signal-to-quantization-noise ratio (SQNR), but you should be aware that
in many sources the term signal-to-noise ratio is used with this meaning as well. Let’s
look at this more closely. (Henceforth, we’ll use the term SQNR to distinguish this
measurement from SNR.)
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Difference between two points
is quantization error

Value before quantization
Quantized value

Figure 1.14 Quantization error
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SQNR is measured in terms of decibels. A decibel is a dimen-
sionless unit that is used to describe the relative power or intensity
of two phenomena. The definition of a decibel, abbreviated dB, is
as follows:

where and are the intensities (also called power across a surface
area) of two signals, which can be measured in watts. So, you might
ask, intensity of what? Once again, that depends on what you’re in-
terested in. Decibels are often used to measure sound intensity, and
this is the use of the word that you’re probably the most familiar with. But decibels can also
measure the intensity of a data signal on a communication network, the optical power out-
put of lasers, or anything that can be measured in watts. Notice that decibels are a dimen-
sionless unit. Since both and are measured in watts, the units are canceled in the divi-
sion, and you are left with just the number representing the ratio.

You may often see another definition for decibels, that is:

where and are amplitude, potential, or pressure, measured in volts. You can see that
the two definitions for a decibel are equivalent if you consider the relationship between
power , potential , and resistance .

Assuming that is constant for the two signals, then

(Recall that .)
Because SQNR is just a ratio, it is measured in decibels. Using the second definition of

decibels from above (because we are measuring amplitudes), we can now explain SQNR
as it applies to linearly quantized samples. First, we define max(quantization value) as the
magnitude of the maximum sample value. With bits for quantization, the samples val-
ues range from to . (Audio signals are represented as sine waves that go
from positive to negative values.) Thus, the maximum sample value in magnitude is .
On the scale of sample values, the maximum quantization error is half a quantization
level, which is where we get the denominator of 1⁄2 (assuming rounding is used in quanti-
zation.) Then

SQNR = 20 log10amax(quantization  value)

max(quantization error)
b = 20 log10a2n-1

1>2 b

2n-1
2n-1

 - 1-2n-1
n
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ASIDE: A decibel is 1 10th of a bel, named
after Alexander Graham Bell. For two signals
with power and , a bel is defined as
follows: If , then the ratio is 
1 bel. This is to say that has 10 times the
power of , since . A bel turned
out to be too coarse a measurement for its
purposes, so the decibel came into common
usage.

log10 (10) = 1I0

I
log10 1I/I02 = 1

I0I

>
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20 Chapter 1 Digital Data Representation and Communication

The above explanation is intended to give you an intuitive sense of SQNR, defined more
simply as follows:

KEY EQUATION

Let n be the bit depth of a digitized media file (e.g., digital audio). Then the
signal-to-quantization noise ratio SQNR is

SQNR = 20 log10(2n)

Signal-to-quantization-noise ratio is directly related to dynamic range. In fact, we will see
that mathematically, they are the same value. Let’s look at the concept intuitively. Dynamic
range, informally defined, is the ratio of the largest-amplitude sound (or color, for digital im-
ages) and the smallest that can be represented with a given bit depth. (Doesn’t that sound like
the definition of SQNR above?) The idea is that the fewer bits you have to represent a range
of colors or a range of sound samples, and the wider the range of colors or sound you want to
represent, the less ability you have to represent subtle differences between values. Say that
you use three bits to represent colors, so you can represent only colors. Because of the
small bit depth, you have a limited dynamic range in the palette you can use in digitizing an
image. Think about the implications of being restricted to a palette with such a small dynamic
range. What if the original image has many colors and these colors are widely ranged? You
may need some blues, greens, reds, yellows, oranges, purples, and white and black. Since you
can use only eight colors, you can use only one shade of each of the colors mentioned. Thus,
the difference between one color and another is relatively large. If you take a photograph that
has thousands of colors ranging widely across the spectrum but you have to reproduce these
with only eight colors, you’re going to have a large rounding error. Alternatively, if you want
subtle differences between one color and the next, you can have only a narrow range of col-
ors. These two alternatives are shown in Figure 1.15. Notice that the rounding error, which is
relative to the narrow range of colors in this second example, will be the same. That is, the dy-
namic range, as dictated by the bit depth, is the same.

The situation is similar when measuring dynamic range in digital audio. A small bit
depth for an audio file limits the range of amplitudes in the digitized sound. A small bit
depth is not good for a digital recording of a symphony orchestra playing a piece of
music that has very loud and very soft passages. In order to be able to represent sound
amplitudes that are so far apart in value, but using a small bit depth, you are forced to have
quantization intervals of a large size, and this increases the amount of error relative to the
true signal. With a small bit depth, more values will round to 0 than with a higher bit depth.
We will revisit the concept of SQNR and dynamic range related to digital audio in more
detail in Chapter 4.

1.3 DATA STORAGE
Working with digital media requires that you handle large amounts of data. Let’s first con-
sider the size of typical image, audio, and video files (leaving aside, for the moment, the pos-
sibility of compressing them). We’ll return to the details of how each medium is represented
in later chapters, but for now Table 1.4 gives you an overview of digital media file sizes.
The examples assume that RGB color is used, with three bytes per pixel. (RGB will be

23
= 8
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1.3 Data Storage 21

With three bits, you have eight colors. You can spread these colors out
over a wide range, with big differences between one and the next, or
spread them out over a narrow range, with small differences between one
and the next.  In either case, the dynamic range is the same, dictated by the
bit depth, which determines the maximum error possible (resulting from
rounding to available colors) relative to the range of colors represented.

Binary encoding
in 3 bits

111

110
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100

011

010

001

000

111

110
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100

011

010

001

000

Binary encoding
in 3 bits

Figure 1.15 Dynamic range of colors

TABLE 1.4 Example File Sizes for Digital Image,Audio,And Video

Example Digital
Image File Size

(without compression):
Example Digital Audio File

Size (without compression):
Example Digital Video File

Size (without compression):

Resolution:

Total number of pixels:
786,432

Color mode: RGB

Bits per pixel: 24 
(i.e., 3 bytes)

Total number of bits:

File size: 2.25 MB

(=2,359,296 bytes)
18,874,368

* 768 pixels
1024 pixels Sampling rate: 44.1 kHz

(44,100 samples per
second)

Bit depth: 32 bits per
sample (16 for each of
two stereo channels)
(i.e., 4 bytes)

Number of minutes:
one minute

Total number of bits:

File size: 10.09 MB for
one minute

Data rate of the file:
1.35 Mb/s

(= 10,584,000 bytes)
84,672,000 

Frame size:
Bits per pixel: 24

Frame rate: 30 frames/s

Number of minutes: one minute

Total image requirement:
14,929,920,000 bits

Audio requirement: 84,672,000
(See column 2.)

Total number of bits:

File size: 1.7 GB

Data rate of the file: 238.65 Mb/s (This
calculation doesn’t take chrominance
subsampling into account. See Chapter 6
for a discussion of subsampling.)

7

(= 1,876,824,000 bytes)
15,014,592,000

'

720 pixels * 480 pixels
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22 Chapter 1 Digital Data Representation and Communication

explained in more detail in Chapter 2.) The video example assumes a frame rate of about
30 frames/s. Each frame is like a still image. Frame shown in quick succession create the
effect of motion. (This will be explained in more detail in Chapter 6.)

Common abbreviations for data sizes are given in Table 1.5. The prefixes kilo-, mega-, and
giga- can lead to confusion because they are used inconsistently. You have seen that with re-
gard to Hertz, kilo- means , mega- means and giga- means

. However, with regard to data storage, kilo- is sometimes defined as 
and sometimes as , mega- is sometimes and sometimes , and giga- is sometimes 
and sometimes . It depends on the source. Manufacturers want to make their storage media
look larger, so they generally use powers of 10. On the other hand, many computers will give
file sizes defining terms with powers of 2. For example, on your computer you may be able to
click on a file to see its properties, which could be listed as 3,686,456 bytes in one place, 3,600
kB in another place, and 3.52 MB in another. Clearly, powers of two are being used for the def-
initions, since and . Although usage is
inconsistent in the computer industry with regard to the prefixes kilo-, mega- and giga-, the
most common convention is to use powers of 2 for memory and file sizes and powers of 10 for
data rates. We will adopt this convention in this book, unless indicated otherwise. You should
note, however, that manufacturers sometimes use kilobyte to mean 1000 bytes, megabyte to
mean 1,000,000 bytes, gigabyte to mean 1,000,000,000.

Table 1.6 lists the reported capacity of the storage media at the time of the writing of this
chapter. Since the definitions of kilo-, mega-, and giga- depend on the manufacturer, you
can take these values to be approximate.

3,686,456>1,048,576 L 3.523,686,456>1024 L 3600

230
109220106210
103109

= 1,000,000,000
106

= 1,000,000,103
= 1000

KEY EQUATIONS

TABLE 1.5

Assume the following abbreviations:
kilobyte kB
megabyte MB
gigabyte GB
kilobit kb
megabit Mb
gigabit Gb
terabit Tb
terabyte TB

For memory and file sizes, assume the following equivalences:

kb, Mb, Gb and Tb are defined analogously.

1 TB = 240 bytes = 1,099,511,627,776 bytes

1 GB = 230 bytes = 1,073,741,824 bytes

1 MB = 220 bytes = 1,048,576 bytes

1 kB = 210 bytes = 1024 bytes

1 byte = 8 bits

A little arithmetic will show how quickly computer storage can be taken up with uncom-
pressed digital media files, especially audio and video. The audio requires more than about
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1.4 Data Communication 23

10 MB per minute, so about 70 minutes would fit on a CD. The situation is worse for dig-
ital video. Let’s just take a rough estimate. One minute of digital video takes about 1.5 GB.
So on a DVD that holds 17 GB, you’d be able to store just a little over 11 minutes of un-
compressed video. Clearly, digital media files can be very large, and consequently, com-
pression is crucial to reducing the file size. But before moving on to compression, let’s
consider an issue related to data storage, and that is data communication.

1.4 DATA COMMUNICATION

1.4.1 The Importance of Data Communication 
in the Study of Digital Media

Data communication is a broad and deep field of study that straddles the disciplines of
computer science and electrical engineering. We can only scratch the surface in this intro-
duction and give superficial treatment to issues that are technically quite complex. Before
we begin tackling this topic, you may find it helpful to know the ways in which data com-
munication is relevant to your study of digital media. Here are our motivations for looking
at issues of data communication:

• Digital media files are typically very large, and rarely do you keep them to yourself. You
store them on CDs and DVDs, send them in email, and post them on web pages. Thus,
you need to consider transmission media and communication methods for digital data.

• Sound and video are time-based media that require large amounts of data. Both cap-
turing and transmitting sound and video in real-time require that the data transmission
keep up with the rate at which the data is played. Thus, issues of bandwidth and data
rate are crucial in the capturing and transmitting of digital audio and video.

• Communication media in our homes and offices are “going digital.” We are sur-
rounded by cellular phones, digital cable, digital television, HDTV, and more. To be
knowledgeable in the field of digital media, you need to understand the difference be-
tween analog and digital modes of communication as they appear in your home and
work environments.

TABLE 1.6 Storage Media and Their Capacity

Storage medium Maximum capacity
Portable Media

CD (Compact Disk) 700 MB

DVD (Digital Versatile Disc or Digital 4.7 GB standard; 8.5 GB dual-layered
Video Disk), standard one sided

DVD video or high capacity 17–27 GB

Memory stick or card 8 GB

HD-DVD (High Definition DVD), standard one-sided 15 GB standard; 30 GB dual-layered

Blu-ray Disk 25 GB standard; 50 GB dual-layered

Flash drive 64 GB

Permanent Media

Hard disk drive 1 terabyte (1000 GB)
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24 Chapter 1 Digital Data Representation and Communication

1.4.2 Analog Compared with Digital Data Communication
Whether data are in analog or digital form, information needs a channel of communication
to get from sender to receiver. You use these communication channels every day—
land-based or cellular telephones; shortwave or regular radios; cable, terrestrial, or satellite
television; and wired or wireless computer networks. You hear that some of these are
digital, though you don’t have to think about this to use them. So how do you know which
communications are being sent digitally?

An important thing to keep in mind is that the transmission medium does not deter-
mine whether the data is communicated in analog or digital form. Both analog and digi-
tal data can be communicated across copper wire (e.g., telephone or computer networks),
coaxial cable (e.g., television), optical fiber (e.g., high-speed computer networks), and
free space (e.g., radio or television). Copper wire, coaxial cable, and optical fiber all re-
quire a physical line between sender and receiver. Across copper wire or coaxial cable,
data can be transmitted by changing voltages. Through optical fiber, data can be commu-
nicated by a fluctuating beam of light. Data can also be communicated through free
space via electromagnetic waves sent by satellite or radio transmission. All of these
transmissions methods use some type of analog waveform, but it is important to note that
they all can be adapted to carry data in both analog and digital form. It is the representa-
tion of the data, not the transmission medium, which determines if the communication is
analog or digital.

Then what is the difference between the ways analog and digital data are transmitted
across a network? Analog telephone transmissions through wire are a good starting point
for understanding how analog data are communicated. When sound is captured electroni-
cally, the changes in air pressure are translated to changes in voltage. In an analog tele-
phone, a microphone picks up the changes in air pressure and translates them into voltage
changes on an electrical wire. For the spoken word “boo,” the voltages rise and fall in a pat-
tern like the one in Figure 1.16. The voltage changes are continuous in the same way that
the waveform representing the word “boo” is continuous.

If the word “boo” is digitized, on the other hand, it is sampled and quantized such that
the data are transformed into a sequence of 0s and 1s. Over copper wire, these 0s and 1s are
sent by means of an electrical current and can be represented as two discrete voltage levels.
For example, a voltage of can represent a 0 bit, and a voltage of can represent a 1
bit. Communication begins with some initial synchronization between sender and receiver.
Then to send each bit, the sending device maintains a steady voltage for a fixed amount of
time. The receiving device, in turn, samples the transmission at evenly-spaced points in
time to interpret whether a 0 or a 1 has been sent. Figure 1.17. illustrates this type of dis-
crete transmission. Varying the voltage in two levels in the manner just described is called

+V-V

Figure 1.16 Waveform for part of the spoken
word “boo”

0
–V

+V

0 1 0 1 1

Figure 1.17 Baseband digital
transmission. Bits are transmitted
by discretely changing voltages.
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1.4 Data Communication 25

baseband transmission, and the line of communication between sender and receiver is
called a baseband channel.

Baseband transmission is used across wire and coaxial cable, but it works well only
across relatively short distances. Noise and attenuation cause the signal to degrade as it
travels over the communication channel. Attentuation is the weakening of a signal over
time and/or space. Baseband transmission is not the only nor even the most common
method of data communication. An alternative, called modulated data transmission (or
sometimes bandpass transmission), is based on the observation that a continuously oscillat-
ing signal degrades more slowly and thus is better for long distance communication. Mod-
ulated transmission makes use of a carrier signal on which data are “written.”

Here again in digital media, sinusoidal waveforms become an important abstraction. A
carrier wave is a signal—for example, a beam of light passing through optical fiber or radio
waves across free space—that is made to oscillate in a regular sinusoidal pattern at a cer-
tain frequency, as shown in Figure 1.18. This carrier wave is transmitted and oscillates at
its characteristic frequency even when no data are being sent. Data are written on the car-
rier signal by means of modulation techniques.

The three basic methods for modulating a carrier wave are amplitude modulation, frequency
modulation, or phase modulation. In amplitude modulation, the amplitude of the carrier signal
is increased by a fixed amount each time a digital 1 is communicated; in frequency modula-
tion, the frequency is changed; and in phase modulation, the phase is shifted. These modula-
tion methods are shown in Figure 1.18, where the digital signal 101 is being sent. You should
note, however, that modulated signals are not necessarily digital. Carrier frequencies and mod-
ulation have long been used to transmit analog radio and television signals as well.

The name bandpass transmission arises from the fact that in this method of data commu-
nication, the carrier signal lies in the center of a frequency band, called a channel, that is
allocated for communication. The sender and receiver both know the channel assigned to
them. The sender sends information using only those frequencies that lie within its chan-
nel, and the receiver listens for communications only within that channel.

Communication across optical fiber or via electromagnetic waves in free space lends it-
self to bandpass transmission using carrier signals. Different colors of light actually have
different frequencies that can be divided into bands or channels when communicated along
optical fiber. The spectrum of light is shown in Figure 1.19. This figure shows colors by their

wavelength. Wavelength and frequency f are related by the equation where c is 

the speed of light in a vacuum. Electromagnetic waves also can be divided into frequency
bands, as shown in Figure 1.20. Both analog and digital messages can be encoded using car-
rier signals in the form of light or other electromagnetic waves modulated to contain the in-
formation being sent.

A continuously oscillating electrical voltage can also be used as a carrier signal. This
fact has made it possible for the telephone system to handle digital data. Telephone systems
were originally designed to communicate data in analog form. With the proliferation of
computers in homes and offices, the need arose for network communication among them.
The telephone system was already in place to accommodate this need, as long as a way
could be found to send the digital signal along the analog telephone line. This is the role of
a modem. The word modem stands for modulator and demodulator. A modem takes the
data given to it by a computer and writes the 0s and 1s onto a continuously oscillating volt-
age using one of the modulation methods described above. Then at the other end of the call,
another modem demodulates the signal for delivery to another computer.

l =

c

f
l
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Amplitude modulation
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Phase modulation

Figure 1.18 Modulation methods

M01_BURG5802_01_SE_C01.QXD  7/2/08  11:48 AM  Page 26



1.4 Data Communication 27

Technical details for baseband and bandpass (modulated) communications have been
studied and refined by engineers for many years. Standards have been developed so that
data can be communicated around the world. The main organizations for developing stan-
dards are the International Telecommunications Union (ITU), the Institute for Electrical
and Electronic Engineers (IEEE), and the Electronic Industries Association (EIA). Many
variations of communication methods exist, but the details are beyond the scope of this
book. For the study of digital media, the important concepts to grasp are the essential
differences between analog and digital data and the ways they are transmitted. We will
discuss more details of data communication in the chapter on digital video, since the data-
intensive, time-based nature of video makes data communication an important issue.

The discussion in this section has moved back and forth between analog and digital
modes of communication, so it may help to summarize the key points:

• Both analog and digital data can be transmitted by means of copper wire, coaxial
cable, optical fiber, and free space. The medium of transmission does not determine
whether the communication is analog or digital. The form of the data does.

• Digital data can be transmitted by means of a baseband signal or a bandpass (i.e.,
modulated) signal. The baseband signal uses discrete pulses representing 0s and 1s.
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Figure 1.19 The spectrum of visible light
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Figure 1.20 The electromagnetic spectrum
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28 Chapter 1 Digital Data Representation and Communication

The modulated signal uses a carrier frequency and an encoding of data based on peri-
odically altering the frequency, amplitude, or phase of the signal.

• Both analog and digital data can be communicated by means of a modulated signal.
A carrier signal can be modulated to contain either analog or digital data.

We began this discussion by comparing how analog and digital data are communicated
as a way of approaching the issue of bandwidth. The term bandwidth is one that you will
hear frequently in different contexts and with slightly different meanings. Bandwidth is im-
portant to the study of digital media because image, audio, and video files are large, and in
the case of audio and video they are time-based. Thus, the rate at which these files can be
created and transmitted is crucial.

In the next sections we’ll discuss three definitions of bandwidth used in three different
contexts. These usages are closely related, but not exactly the same, and the overloading of
the term can lead to confusion. Separating the discussion into three different definitions
should help to clarify the usage.

1.4.3 Bandwidth
1.4.3.1 Bandwidth as Maximum Rate of Change 

in Digital Data Communication

The first and perhaps most important usage of the term bandwidth (for our purposes)
relates to digital data communication. In this context, keep in mind that we are talking
about the transmission of discrete 0s and 1s. This transmission can be done by discrete
pulses—that is, discrete changes of voltages in baseband data transmission. Alternatively,
in the case of modulated communication, the data can be communicated by discrete
changes in the frequency, amplitude, or phase of a carrier signal. The question with regard
to bandwidth in this context is this: How fast can the signal be changed? That is, how fast
can the sender change the signal from a voltage of V to a voltage of V and back again?
Or, in the case of modulated communication, how fast can the sender change the amplitude
of the carrier signal (or the frequency or the phase)? This is not a matter of the sender only.
Keep in mind that the receiver must be able to understand the changing signal as well.

An example from everyday life might help to clarify the concept of bandwidth used
in this context. What if you wanted to tell a friend something really fast? How fast can you
talk and still speak clearly? Don’t forget that your friend has to be able to keep up with your
talking; he or she has to be able to understand. The maximum rate at which you can talk
and your friend can understand is the bandwidth of the communication. Notice that this has
nothing to do with the speed of sound. Try another example. What if you had to send Morse
code by means of a blinking flashlight? How fast could you send the code? The speed at
which you can send the code is limited by how fast the hardware (your flashlight) can be
operated and how fast your hand can click it. Even if you could flash the flashlight as fast
as you wanted, at some point the person looking at it wouldn’t be able to distinguish one
signal from the next. Again, the bandwidth has nothing to do with the speed of light. It’s a
matter of the sending and receiving devices.

In digital data communication, there’s a limit on the rate at which digital signals can be
changed—whether it is voltages across copper wire or coaxial cable, light across optical
fiber, or an electromagnetic wave changing frequency or amplitude from a satellite trans-
mission. Just as we can move our vocal cords only so fast, the sending device can change
its signal only so fast. The physical properties of the transmission medium also have an

-
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1.4 Data Communication 29

impact on the way the signal degrades and errors are introduced. At the receiving end of the
transmission, there are limits on how fast the receiver can read and distinguish the signal
correctly. Whatever the transmission medium and the engineering of the sending and
receiving devices, there is a maximum rate of change for that communication system. This
is the system’s bandwidth.

Bandwidth is measured in cycles per second or Hz. Think about what this implies. A base-
band transmission system with a bandwidth of 5000 Hz can cycle through its signal—that is,
it can change its signal from one voltage level to a different one and then back again—at a
maximum rate of 5000 times per second. We can say this another way: Every 1/5000th of a
second, this system can communicate two things. If one voltage represents a 0 and another
represents a 1, then the system can transmit a 0 and a 1 every 1/5000th of a second. This
means that it can transmit 10,000 bits every second. Thus, we have the following definition:

KEY EQUATION

Assume that a signal is sent with two possible signal levels and a bandwidth
of b Hz. Then the data rate, d, in bits/s is

d = 2b

It makes sense that to get the data rate, you multiply the bandwidth by two. Bandwidth is
defined by how fast the signal can change. Change implies that first there must be one
thing, and then another—two different pieces of information. Those pieces of information,
in this context, are bits.

What if more than one signal level is permitted? What if four instead of two voltages are
possible? Instead of having one voltage represent 0 and the other represent 1, we could
have one voltage represent 00, the second represent 01, the third represent 10, and the
fourth represent 11. In this way, each change of voltage would transmit two bits instead of
one. Allowing more than two signal levels such that more than one bit can be communi-
cated at a time is called multilevel coding. To generalize,

KEY EQUATION

Assume that a signal is sent with k possible signal levels and a bandwidth of
b Hz. Then the data rate, d, in bits/s is

d = 2b log2(k)

An example of this is shown in Figure 1.21. Four possible voltage levels are transmitted. If
the lowest level is transmitted, it is meant to communicate 00. The second lowest level
communicates 01, the third 10, and the highest level 11. Thus, two bits are communicated
at a time.

If you can increase the data rate simply by increasing the number of voltage levels
allowed, then why not have hundreds of voltage levels? The reason has to do with the
engineering of the hardware. The more voltage levels, the more complex the hardware must
be to be able to read and interpret the different levels, and the more chance there is for error.
Thus, the number of voltage levels used is generally not very high.
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30 Chapter 1 Digital Data Representation and Communication

1.4.3.2 Bandwidth of a Signal in Terms of Frequency

The bandwidth of a signal is easier to define. In this context, we are talking about a signal
that is sent in the form of a wave. As discussed in Section 1.2.2, any complex periodic wave-
form can be decomposed—both mathematically and physically—into frequency compo-
nents that are simple sine waves. These frequency components range from some minimum
to some maximum. Then the bandwidth of a signal is the difference between the maximum
and minimum frequency components. We will use the term width of a signal to avoid
confusion with the other use of the term bandwidth.

11
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With k signal levels, log2k bits are transmitted with each signal.
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Figure 1.21 Data rate as determined by number of signal levels

KEY EQUATION

For a signal that can be represented as a periodic waveform, let be the
frequency of the highest-frequency component and let be the frequency of the
lowest-frequency component. Then the width of the signal, , is

w = fmax - fmin 

w
fmin 

fmax

For example, the complex waveform at the bottom of Figure 1.6 is composed of three
frequencies: the notes C (262 Hz), E (330 Hz) and G (392 Hz). The difference between
the maximum and minimum frequency components—in this case, 130 Hz— is the width of
the signal. (Note that in this definition, we make no assumption about the nature of the data
communicated by the signal. It could be either analog or digital.)

This use of the term bandwidth differs from the one in the previous section in that we are
no longer dealing with the maximum rate that a signal can change on a transmission medium.
Instead, we are talking about the frequency range for a particular signal, assuming that the
signal is sent as a waveform. In this case, the signal in question may be transmitted on a car-
rier signal that lies in the center of a frequency band, called a channel. The significance of
this usage lies in the fact that the width of the signal must fit within the width of the channel
on which it is transmitted. Otherwise, some information will be lost. For example, high
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definition television (HDTV) requires a large bandwidth so that the television frames can be
transmitted at a rate of 30 per second. For this to be possible, the bandwidth of the channel
on which HDTV is broadcast must be large enough to accommodate the bandwidth of the
HDTV signal. This leads us to another use of the term bandwidth, as it relates to channels.

1.4.3.3 Bandwidth of a Communication Channel in Terms of Frequency

When data are communicated across the airwaves, they are sent along some particular chan-
nel, which is a band of frequencies. The sender communicates within its designated fre-
quency band, and the receiver tunes to that band to receive the communication. The range of
frequencies allocated to a band constitutes the bandwidth of a channel. (We could also call
this simply the width of a channel, since it correlates with the width of a signal.) In the case
of the airwaves for television and radio, the Federal Communications Commission allocates
channels of an appropriate bandwidth large enough to accommodate the type of communi-
cation (Table 1.7). For example, each AM radio station is allocated a bandwidth of 10 kHz.
FM radio stations have bandwidths of 200 kHz. Analog television has a bandwidth of about
6 MHz. Digital high definition television (HDTV) requires a bandwidth of approximately
20 MHz. Again in this usage of the term bandwidth, we are talking about data that are trans-
mitted by means of a carrier signal of a given frequency that lies at the center of channel, but
we make no assumptions about the nature of the data being communicated. Both analog and
digital data can be sent by means of a carrier signal. However, there are repercussions to
modulating the carrier signal so that it contains data, regardless of whether it is analog or
digital. Modulation adds frequency components called sidebands to the original carrier sig-
nal, and these sidebands must lie within the designated channel. Thus, the bandwidth of a
channel affects the amount of information that can be communicated.

This definition of bandwidth raises a number of relevant questions. How is an appropri-
ate bandwidth determined for AM radio, FM radio, television, and digital HDTV? What
makes 10 kHz, 200 kHz, and 6 MHz, and 20 MHz, respectively, the right size? How does
modulation of a carrier signal give rise to sidebands? What are the frequencies of these
sidebands, and how do they affect the bandwidth requirements for channels? These ques-
tions will be examined in more detail in Chapter 6.

1.4.4 Data Rate
1.4.4.1 Bit Rate

The main goal in this section is to give you a basic understanding of the terminology used
to compare data communication systems and the rates at which they transmit data. Let’s
return to the first definition of bandwidth: the maximum rate of change of a signal, as a

TABLE 1.7 Frequency Bands for Radio and Television

Radio

AM, 535 kHz to 1.7 MHz

shortwave radio, 5.9 MHz to 26.1 MHz

CB radio, 26.96 MHz to 27.41 MHz

FM radio, 88 MHz to 108 MHz, allocated 
in 200 kHz channels

Television

54 to 88 MHz for channels 2 to 6

174 to 216 MHz for channels 7 to 13

470 to 890 MHz for UHF channels 14 to 83
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32 Chapter 1 Digital Data Representation and Communication

property of the communication system on which the signal is being sent. This definition
is closely related to data rate or bit rate. In fact, bandwidth is often loosely used as a syn-
onym for data rate or bit rate, and this has become widely accepted. However, in our
discussion, we distinguish between the terms. Bandwidth is measured in cycles per second—
Hertz. Data rate is measured in bits per second—more precisely, in kilobits per second
(kb/s), kilobytes per second (kB/s), megabits per second (Mb/s), megabytes per second
(MB/s), gigabits per second (Gb/s), or gigabytes per second (GB/s). If measured in bits
per second, data rate is synonymous with bit rate. (The inconsistency in the definitions of
kilo-, mega-, and giga- that we noted in the section on data storage carries over here.
Generally, powers of ten define these terms when they are associated with data rate, and
that’s the convention adopted in this book.)

Recall that bandwidth and data rate are related by the equation . where k
is the number of different signal values that can be transmitted. What we did not mention
earlier is that in this equation, d is a theoretical data rate—a maximum that is not achiev-
able in reality. The actual amount of data that can be sent per unit time is limited by the
noise that is present in any communication system. No signal can be sent with perfect
clarity over an indefinite span of space and time. Some amount of noise is introduced by
electromagnetic interference. If too much noise is introduced, the receiver cannot always
interpret the signal correctly. Some transmission systems are more susceptible to noise than
others, and this lowers their actual achievable data rate.

A refinement of the relationship between data rate and bandwidth
is given by Shannon’s theorem, which quantifies the achievable data
rate for a transmission system that introduces noise. According to
Shannon’s theorem, . s is a measure of the
signal power, and p is a measure of the noise power. (Note that s p
is another application of the signal-to-noise ratio discussed above.)
For our purposes, we don’t need to do precise measurements of
signal and noise and calculations of data rates, but this theorem

helps us to understand the origin of data rates reported for certain digital communication
systems. These data rates arise from the rate at which a signal can be changed on the given
transmission medium coupled with the amount of noise typically introduced in proportion
to the actual signal.

Data rate is important in three aspects of digital media—not only in communicating the
data, but also in capturing it, and, in the case of audio and video, playing it. Data rate is im-
portant in digital data communication because no one wants to wait an unreasonable length
of time to transfer pictures, sound, and video from one place to another.

Refer back to Table 1.4, which gives typical file sizes for digital images, audio, and
video. With these file sizes in mind, consider the situations in which you might want to
send a digital picture, sound, or movie from one computer to another. You may have posted
an image on your web page, and someone at another location has gone to your page and is
downloading the image. How long will this take? It depends on the image size and the type
of network connection. Table 1.8 lists some common network types and their typical data
transfer rates as of the writing of this chapter. With this information, you can estimate the
time it would take to download, for example, a 2.25 MB digital image (from the example
in Table 1.4). Over a network connected by means of a 28.8 kb/s telephone modem, the file
would take over ten minutes—far too long for the patience of most web users. In contrast,
a cable modem achieving a data transfer rate of 20 Mb/s can download the image file in
under a second.

>c = b log2(1 + s>p)

d = 2b log2(k)

ASIDE: Claude Shannon (1916–2001) was an
American mathematician and electrical engineer
educated at the Massachusetts Institute of
Technology and later employed at Bell Labs. His
work has been seminal in information theory.
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It’s even more important to have a high-speed connection for the transfer of digital audio
and video files. First of all, video files are larger than still images, containing thousands of
images in the form of frames, along with sound. If you want to download a DVD-formatted
video so that you can play it later, you have a very large file to deal with. Secondly, digital
audio and video are both time-based media. What if you want to play an audio or video
transmission in real-time, as it downloads? If this is the case, the communication link must

TABLE 1.8 Data Transfer Rates for Common Communication Links

Wide Area Network
Type of Data Connection Data Rate

telephone modem 28.8–56 kb/s

ISDN (Integrated Services Digital Network) 64–128 kb/s

ADSL (Asymmetric Digital Subscriber Line) 1.544–8.448 Mb/s (downstream) 
16–640 kb/s (upstream)

ADSL2 0.8–3.5 Mb/s up, 5–12 Mb/s down

1–3.5 Mb/s up, 24 Mb/s down

VDSL (Very High Bit DSL) 12.96–55.2 Mb/s ( 12 Mb/s down and
52 Mb/s up, or 26 Mb/s symmetrical at
1000 feet, 10 Mb/s at 4000 feet )

Cable modem 20–40 Mb/s

VDSL2 50–250 Mb/s

Local Area Network
Type of Data Connection Data Rate

Token ring 16 Mb/s

Ethernet (10base-X) 10 Mb/s

Fast ethernet (100base-X) 100 Mb/s

FDDI 100 Mb/s

Gigabit ethernet 1 Gb/s

Wireless 802.11b 11 Mb/s

Wireless 802.11g 54 Mb/s

Computer Interfaces
Type of Data Connection Data Rate

Serial 10–230 kb/s

Parallel 8 Mb/s

SCSI 1 12 Mb/s

SCSI 2 80 Mb/s

Fast wide SCSI 160 Mb/s

SCSI (various ultra versions) 320–2560 Mb/s

USB, USB2 12–480 Mb/s

SDI (serial digital interface) 143–360 Mb/s

Firewire (IEEE 1394) 400–800 Mb/s

DMA ATA 264–1064 Mb/s

'

'

ADSL2+
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34 Chapter 1 Digital Data Representation and Communication

be fast enough to deliver the data so that it can be played at the appropriate speed. For the ex-
ample audio file in Table 1.4, it would be necessary to transmit data at a rate of 1,411 kb/s.
For the example video file, the rate would be 222,595 kb/s. None of the data connection
types in Table 1.8 can accommodate such a data rate. This is why compression becomes so
important in digital media applications.

Data rate is important in capturing digital video, since video is time-based and the most
data-intensive of the media. When digital video is captured, motion and sound are happen-
ing in real time. Motion is captured as a sequence of frames, with a common frame rate of
30 frames per second. Each frame is a digital image composed of pixels defined by their
color values, often three bytes per pixel. Sound is captured in a sequence of audio sam-
ples, often four bytes per sample at a sampling rate of 44.1 kHz. Sound and image together
generate a large amount of data, on the order of 30 MB per second or more if uncom-
pressed. This data must move from the digital camera to the computer and be stored at a
rate that keeps up with the live motion that is being captured. Thus, the data rate of the
connection from camera to computer and the storage rate on the hard disk are crucial.
Table 1.8 gives the data transfer rates of commonly used camera-to-computer connections
as of the writing of this chapter. Firewire (IEEE 1394) is a commonly used physical con-
nection between a digital video camera and a computer for live video capture because of
its high data transfer rate.

Data rate is also an issue when you play a digital CD or DVD (compact disc and digital
versatile disk, respectively). In this case, you don’t have to transfer the data over a
network. You already have it on a CD or DVD in your possession. But the CD or DVD
player needs to have a data transfer rate that is adequate for your medium. Consider, for
example, a music CD. Each strain of music is composed of audio samples. If the CD
player cannot play the data fast enough, it will not be possible to play the music at the cor-
rect speed. CD player speeds have evolved steadily since the 1980s. The first CDs were
playable at a rate of 1200 kb/s. The next generation could play at twice the rate—which is
2400 kb/s—and were called 2X speed. Each subsequent generation was based on the
speed of the original CD players. The current 8X to 52X CD players now range from 1200
kB/s to 7800 kB/s. Similarly, the first generation of DVD-ROMs had a data transfer rate
of 1.32 MB/s, and all subsequent generations have been measured as multiples of this
original benchmark.

TABLE 1.9 Data Transfer Rates for Common Storage
Devices. (Not all generations are listed.)

CD Drives (Compact Disc)

1X 150 kB/s (1200 kb/s or 1.2 Mb/s)

2X 300 kB/s

8X 1200 kB/s

52X 7.8 MB/s

DVD Drives (Digital Versatile Disc or Digital Video Disc)

1X 1.32 MB/s

16X 21.09 MB/s
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1.4.4.2 Baud Rate

A term close in meaning to bandwidth and bit rate is baud rate. As
is the case with bandwidth, there is some confusion—or at least
lack of agreement—about the definition of baud. The most precise
definition of baud rate is “the number of changes in the signal per
second, as a property of sending and receiving devices.” This would
be a property measured in cycles per second, Hertz. Under this definition, baud rate is
synonymous with bandwidth, not bit rate. As you saw earlier in this chapter, if the sending
device uses more than one signal level—say, k signal levels—then the bit rate, d, is given
by the equation . Thus, to convert from baud rate to bit rate, you have to
consider how many different signal levels are possible. However, just like bandwidth, the
term baud rate is used loosely. Baud rates for telephone modems are commonly reported in
bits per second rather than cycles per second. For example, current telephone modems are
often described as having a baud rate of 56 kb/s (although this is actually their bit rate). In
light of this confusion, here are the main points to understand:

• Baud rate is close in meaning to bandwidth as bandwidth relates to digital data com-
munication. The main difference is that baud rate is usually used to refer to sending
and receiving devices, whereas bandwidth has other meanings related to frequencies
over the airwaves.

• A device like a modem can have a maximum baud rate as well as an actual baud rate.
The actual baud rate is the rate agreed upon between sender and receiver for a partic-
ular communication.

• What is often reported as a baud rate is really a bit rate. (But bit rate is generally what
you want to know anyway, so no harm done.) To be precise, baud rate and bit rate are
related by the equation .

1.5 COMPRESSION METHODS

1.5.1 Types of Compression
For good fidelity to the original source, it is necessary that image, sound, and motion be
digitized at a fine degree of resolution and with quantization levels covering a wide dy-
namic range. This typically translates to thousands or millions of samples, each of which
is, say, two to four bytes in size—sometimes larger. In short, digital media files are usu-
ally very large, and they need to be made smaller—compressed, that is. Without com-
pression, you probably won’t have the storage capacity to save as many files as you’d like
to, and you won’t be able to communicate them across networks without overly taxing
the patience of the recipients. On the other hand, you don’t want to sacrifice the quality
of your digital images, audio files, and videos in the compression process. Fortunately,
the size of digital media files can be reduced significantly with little or no perceivable
loss of quality.

Compression algorithms can be divided into two basic types: lossless compression and
lossy compression. In lossless compression, as the name implies, no information is lost be-
tween the compression and decompression steps. Compression reduces the file size to fewer
bits. Then decompression restores the data values to exactly what they were before the com-
pression. Lossy compression methods, on the other hand, sacrifice some information. How-
ever, these algorithms are designed so that the information lost is generally not important to

d = 2b log2(k)

d = 2b log2(k)

ASIDE: Baud rate is named for J.M.E. Baudot
(1845–1903), a French engineer who invented
the Baudot telegraph code and the first success-
ful teleprinter.
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36 Chapter 1 Digital Data Representation and Communication

human perception. In image files, it could be subtle changes in color that the eye cannot de-
tect. In sound files, it could be frequencies that are imperceptible to the human ear.

Aside from the broad categories of lossy and lossless compression, you will see other la-
bels given to types of compression algorithms, including dictionary-based, entropy,
arithmetic, adaptive, perceptual and differential compression methods. Dictionary-based
methods (e.g. LZW compression) use a look-up table of fixed-length codes, where one code
word may correspond to a string of symbols rather than to a single symbol in the file being
compressed. Entropy compression uses a statistical analysis of the frequency of symbols and
achieves compression by encoding more frequently-occurring symbols with shorter code
words, with one code word assigned to each symbol. Shannon-Fano and Huffman encoding
are examples of entropy compression. Arithmetic encoding benefits from a similar statisti-
cal analysis, but encodes an entire file in a single code word rather than creating a separate
code for each symbol. Adaptive methods gain information about the nature of the file in the
process of compressing it, and adapt the encoding to reflect what has been learned at each
step. LZW compression is by nature adaptive because the code table is created “on the fly”
during compression and decompression. Huffman encoding can be made adaptive if fre-
quency counts are updated as compression proceeds rather than being collected beforehand;
the method adapts to the nature of the data as the data are read. Differential encoding is a
form of lossless compression that reduces file size by recording the difference between
neighboring values rather than recording the values themselves. Differential encoding can
be applied to digital images, audio, or video. In the sections that follow, we will look more
closely at three algorithmic approaches to lossless compression. Other methods will be ex-
amined in detail in the chapters on digital image, audio, and video.

The compression rate of a compression algorithm is the ratio of the original file size a to
the size of the compressed file b, expressed as a:b. Alternatively, you can speak of the ratio
of b to a as a percentage. For example, for a file that is reduced by compression to half its
original size, you could say that 50% compression is achieved, or alternatively, that the
compression rate is 2:1.

1.5.2 Run-Length Encoding
Run-length encoding (RLE) is a simple example of lossless compression. It is used in image
compression. For example, files that you see with the .bmp suffix—a Microsoft version of
bitmap image files—optionally use run-length encoding. Here’s how it works. An image file
is stored as a sequence of color values for consecutive pixel locations across rows and down
columns. If the file is in RGB color mode, there are three bytes per pixel, one for each of the
red, green, and blue color channels. If the file is grayscale, there is one byte per pixel. For
simplicity, let’s use a grayscale file in this example. (Extending the algorithm to three bytes
per pixel is straightforward.) Since each pixel position is encoded in one byte, it represents
one of 256 grayscale values. (You recall that , so eight bits can encode 256 differ-
ent things.) Thus, a grayscale image file consists of a string of numbers, each of them
between 0 and 255. Assume that the image has dimensions , for a total of
10,000 pixels. Assume also that the pixels are stored in row-major order, which means that
the values from a whole row are stored from left to right, then the next row from left to
right, and so forth.

You can easily imagine that in many images, there could be rows with strings of repeated
grayscale values. The simple idea in run-length encoding is that instead of storing each of
the 10,000 pixels as an individual value, it can be more concise to store number pairs ,(c, n)

100 * 100

28
= 256
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where c indicates the grayscale value and n iis how many consecutive pixels have that
value. For example, say that in a 10,000-pixel grayscale image, the first 20 pixels are:

255 255 255 255 255 255 242 242 242 242 238 238 238 238 238 238 255 255 255 255

The run-length encoding of this sequence would be

(255, 6), (242, 4), (238, 6), (255, 4)

Let’s compare the number of bytes needed to store the run-length encoded version of this
line of pixels versus the number of bytes needed to store it originally. For this example,
we’ll assume that everything has to be rounded to units of bytes. (We could compute how
many bits are needed, but working with bytes suffices to make the point in this example.)
Without RLE, 20 pixels require

To determine the number of bytes required with RLE, we first need to figure out how many
bytes are needed to store in each pair. Clearly, c can be stored in one byte since
its values range from 0 to 255. Now we have to consider how large n could possibly be. In
our example, the image has 10,000 pixels in it. It is possible that all 10,000 pixels have the
same color, in which case . To store 10,000, we’d need 14 bits.
( .) Since we’re assuming we allocate memory only in byte
increments, this means we need two bytes.

Say that the run-length encoding algorithm scans the image file in a preprocessing step
to determine the size of the largest run of colors, where a run is a contiguous sequence of
the same color. Let the size of this largest run be r. Try some examples values for r. What
if the largest run is 300—that is, Then how many bits would you need to store the
second value in each (c, n) pair? You can represent the numbers 0 through 255 with eight
bits, right? So eight bits is not enough, because you can’t represent a number as big as 300.
You can represent the values 0 through 511 with nine bits, so nine bits is enough. If you
round this up to the nearest byte, that’s two bytes. If you think this through intuitively, you
should be able to see that the formula for figuring out how many bytes you need to represent

a number that can be anywhere between 0 and r is . If you need two

bytes to store n in the (c,n) pair, then in the example above, the RLE encoded string of val-
ues would require 8 bytes rather than 20.

Now, what if you have a sequence like the following?

255 255 255 255 243 240 242 242 242 241 238 238 237 238 237 238 255 255 255 255

The run-length encoding of this sequence would be

(255, 4), (243, 1), (240, 1), (242, 3), (241, 1), (238, 2), (237, 1), (238, 1), (237, 1), (238, 1), (255, 4)

In this case, run-length encoding actually requires more rather than fewer bytes than the 
original uncompressed image—22 rather than 20.

The actual implementation of this might be different. Rather than determining the 
largest n in advance and then setting the bit depth of n accordingly, it makes sense to choose 
a bit depth of n in advance. Then if more than n consecutive pixels of the same color are en-
countered, the runs are divided into blocks. For example, if one byte is used to represent 
each n, then the largest value for n is 255. If 1000 consecutive whites exist in the file (with 
color value 255), they would be represented as

(255, 255), (255, 255), (255, 255), (255, 235)

b = l log2(r + 1)

8
m

r = 300?

10,00010 = 100111000100002

n = 10,000

(c, n)n

20 pixels * 1 byte>pixel = 20 bytes
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The image in Figure 1.22 is a good example of an image where run-length encoding is
beneficial. Disregarding heading information on the image file, the image contains

pixels. With run-length encoding, again disregarding the size of the

header on the file, the file requires 1084 bytes. The compression rate is , or about 9:1.

This is an excellent compression rate, but obviously most images will not have such
clearly defined color areas, and so few of these areas. (The encoded file size was obtained
by saving the file as a BMP image in an application program and then looking at the file
properties.)

Run-length encoding is a simple algorithm that gives acceptable results on some types
of images, with no risk of loss of quality. It should be clear that no information is lost in the
encoding process. We still have precisely the same values for the pixels after the file is
encoded and then decoded. The encoded values are just represented in a way that is poten-
tially more concise. In practice, RLE algorithms are fine-tuned and do not operate in pre-
cisely the way shown here, but the main principle is always the same.

The second example of run-length encoding given above illustrates a case where the
encoding did not result in a smaller file. You should note that for any lossless compression
algorithm and for any length file, there will always exist at least one case where the algo-
rithm does not reduce the size of an input file of that length. Why is this necessarily so? You
should be able to prove this to yourself with what is called a counting argument. Let’s walk
through the argument together.

• Consider an arbitrary file that you want to compress. Whether it is an image, audio, or
video file, it is just a sequence of bits.

• Consider all the files that have bits in them. How many different files of length n are
there? Each bit can have a value of 0 or 1. That’s files with length n.

• Assume that we have a lossless compression algorithm that can reduce the size of any file
given to it as input. If the algorithm is given a file of length n, it will produce a compressed
file of length . How many different files are there of length ? There’s 1
zero-bit file, 2 one-bit files, 4 two-bit files, etc. Thus, there are

such files.
• A key to this argument is that we are talking about lossless compression algorithms.

Since the algorithm we are considering is lossless, it cannot be the case that two files
of length n compress to yield the same file (some file of length ). If two files
did compress to yield the same file, then in decompression, how would it be deter-
mined which of the two original files was the source? In such a case, some information

…  n -1

2n-1
= 2n 

- 1
1 + 2 + 4 +

Á  +
…  n -1…  n -1

2n
n

10000

1084

100 * 100 = 10,000

Figure 1.22 Simple image
that is a good candidate for
run-length encoding
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1.5 Compression Methods 39

would be lost, and the algorithm could not be lossless. Thus, we want to map each of
the input files of length n to exactly one compressed file of length .

• We’ve discovered a contradiction. There are fewer files of length than there
are files of length n. This argument shows that for any lossless algorithm and for any
length of input file, there will exist cases where the algorithm does not reduce the size
of the input file.

Lossless compression algorithms are applied in situations where loss of data cannot be
tolerated. This is the case in the compression of both text and of binary-encoded computer
programs, for example, and thus lossless algorithms are used in tools such as gzip and
compress (on the Unix platform) or pkzip and winzip (on the Windows platform). Sound
files do not lend themselves well to lossless compression. Consecutive audio samples with
the same value are unusual, so RLE is not very effective for sound. Image files are better
candidates for lossless compression. While an image file is still being edited, it is prefer-
able to keep as much of the original data as possible. Thus, a number of image file
formats—PNG and TIFF, for example—offer forms of lossless compression such as LZW.
(See Chapter 3 for more information on image file types.) Lossless compression can also
be used as one step in a more complex algorithm that does include lossy steps. This is the
case with Huffman encoding, one step in the JPEG compression algorithm. We will look at
Huffman encoding and LZW compression in more detail in Chapter 3.

1.5.3 Entropy Encoding
Claude Shannon’s work in information theory sheds light on the limits of lossless compres-
sion and methods for achieving better compression rates with entropy encoding. Recall that
entropy encoding works by means of variable-length codes, using fewer bits to encode
symbols that occur more frequently, while using more bits for symbols that occur infre-
quently. Shannon’s equation, below, gives us a way a judging whether our choice of num-
ber of bits for different symbols is close to optimal.

Borrowing the term entropy from physics, Shannon defines the entropy of an informa-
tion source S as follows:

…  n -1
…  n -1

KEY EQUATION

Let be a string of symbols and be the frequency of the symbol in the
string. ( can equivalently be defined as the probability that the symbol will appear
at any given position in the string.) Then

H(S) = h = a ipi log2a 1

pi
b

ithpi

ithpiS

Applying Shannon’s entropy equation, you can determine an optimum value for the aver-
age number of bits needed to represent each symbol-instance in a string of symbols, based
on how frequently each symbol appears. Shannon proves that you can’t do better than this
optimum. You’ll see more clearly what this means in the example below. Let’s step through
the equation and an example to get a better understanding.
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40 Chapter 1 Digital Data Representation and Communication

Think about an image file that has exactly 256 pixels in it, each pixel of a different color.
Then the frequency of each color is 1 256. Thus, Shannon’s equation reduces to

This means that the average number of bits needed to encode each color is eight, which
makes sense in light of the fact that .

What if you had an image file that had many instances of some colors, but only a few in-
stances of others? For example, what if you had an image file of 256 pixels and only eight
colors in the image with the following frequencies: 

log2 256 = 8

a
255

0

1

256
 £ log2£ 1

1

256

≥ ≥ = a
255

0

1

256
 (log2(256)) = a

255

0

1

256
(8) = 8

>

TABLE 1.10 Color Frequencies

Color Frequency

Optimum Number
of Bits to Encode

This Color

Relative Frequency
of the Color in 

the File

Product of
Columns 3 

and 4
black 100 1.356 0.391 0.530

white 100 1.356 0.391 0.530

yellow 20 3.678 0.078 0.287

orange 5 5.678 0.020 0.111

red 5 5.678 0.020 0.111

purple 3 6.415 0.012 0.075

blue 20 3.678 0.078 0.287

green 3 6.415 0.012 0.075

Then Shannon’s equation becomes

So what’s the significance of this? Let’s see how Shannon’s equation can be applied
to compression. Consider each term individually. The first term corresponds to the
color black. Relative to the size of the entire file, the symbol for black carries

bits of information every time it appears in the file, a measure of how

many times black appears relative to the size of the file. The third term corresponds to the

color yellow. Yellow conveys bits of information each time it appears.log2a256

20
b = 3.678

log2a 256

100
b = 1.356

L  0.530 + 0.530 + 0.287 + 0.111 + 0.111 + 0.075 + 0.287 + 0.075 L 2.006

+  
5

256
 log2a256

5
b +

3

256
 log2a256

3
b +

20

256
 log2a256

20
b +

3

256
 log2a256

3
b

100

256
 log2a 256

100
b +

100

256
 log2a 256

100
b +

20

256
 log2a256

20
b +

5

256
 log2a256

5
b
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1.5 Compression Methods 41

The implication is that if we were to encode each color with a number of bits equal to its
information content, this would be an optimum encoding. That is, we couldn’t encode the
file in any fewer bits. Overall, the minimum value for the average number of bits required
to represent each symbol-instance in this file is 2.006. This implies that in an optimally
compressed file, the average number of bits used to encode each symbol-instance cannot be
less than 2.006.

Keep in mind that the implication in Shannon’s equation is that we don’t necessarily need
to use the same number of bits to represent each symbol. A better compression ratio is
achieved if we use fewer bits to represent symbols that appear more frequently in the file.
Algorithm 1.1, the Shannon-Fano algorithm, describes one way that Shannon’s equation can
be applied for compression. It attempts to approach an optimum compression ratio by assign-
ing relatively shorter code words to symbols that are used infrequently, and vice versa.

ALGORITHM 1.1

algorithm Shannon-Fano_compress
/*Input: A file containing symbols. The symbols could represent characters of text,
colors in an image file, etc. 
Output: A tree representing codes for the symbols. Interior nodes contain no data.
Each leaf node contains a unique symbol as data.*/
{

list � a list of the symbols in the input file, sorted by their frequency of appearance
code_tree � split_evenly(list)
}

algorithm split_evenly(list)
/*Input: A sorted list of symbols, list.
Output: A tree representing the encoding of the symbols in list.*/
{

if the size of list � �1, then {
create a node for the one symbol in list, giving it NULL children
put the symbol as the data of the node
return the node

}
else {

Divide list into two lists list1 and list2 such that the sum of the frequencies in list1
is close as possible to the sum of the frequencies in list.

t � a tree with one node
lchild � split_evenly(list1)
rchild � split_evenly(list2)
attach lchild as the left child of t
attach rchild as the right child of t
return t

}
}

The algorithm takes a recursive top-down approach, each recursive step dividing 
the symbols in half such that the symbols in the two halves have approximately the same
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42 Chapter 1 Digital Data Representation and Communication

number of instances in the file being compressed. The algorithm returns a code-tree where
the branches are implicitly labeled with 0s and 1s. Gathering the 0s and 1s down each path
from root to leaf node gives you the code for the symbol related to the leaf node. In our ex-
ample, the tree could look like the one shown in Figure 1.23. Colors are abbreviated, and
frequencies are shown beside the colors.

0

0

0 1 0 1

0 1 0 1

1 0 1

1

BL 100

BL 100

Y 20

O 5

P 3

Y 20

Y 20

O 5

P 3

O 5

P 3

W 100

B 20

R 5

G 3

B 20

R 5

G 3

O 5 P 3 R 5 G 3

B 20 R 5

G 3

W 100

Figure 1.23 Example of the Shannon-Fano algorithm applied to compression

The Shannon-Fano algorithm for compression works toward achieving the theoretical
minimum number of bits per symbol by the method described in Algorithm 1.1.

In this example, the colors would be encoded as shown in Table 1.11. The codes vary in
length from two to four bits. How close is the number of bits per symbol used in this en-
coding to the minimum of 2.006 determined by Shannon’s equation? All the symbols for
black and white are encoded with two bits, all the symbols for yellow and blue are encoded
with three bits, and so forth. This give us

(100 * 2) + (100 * 2) + (20 * 3) + (5 * 4) + (5 * 4) + (3 * 4) + (20 * 3) + (3 * 4) = 584
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The colors require 584 bits to encode. For 256 symbols in the file, this is an average of

bits per symbol-instance—close to the minimum average number of bits per 

symbol given by Shannon’s equation. If we assume that before compression, eight bits were 

used for each symbol, then the compression rate is , which is about 3.5:1.

As an aside, you might also want to consider why the word entropy—borrowed from
physics—has been adopted in the context of information theory and encoding. The most
common definition you will see for the word entropy is disorder. However, a better defini-
tion in most situations is multiplicity in the way something can be ordered. Here’s a simple
example. On a pair of dice, there are six different ways you can roll a value of seven, while
there is only one way to roll a value of two. Thus, the value seven has greater entropy than
the value two. In the latter definition, entropy is a measure of the number of ways that you
can produce a seven. How does this relate to Shannon’s equation, and why did Shannon use
the term entropy to describe the average minimum number of bits needed to represent each
symbol in a string of symbols? You could think of it this way. A file that has a large num-
ber of symbols in it relative to the file size will yield a large number from Shannon’s equa-
tion, compared with a file that has a small number of symbols relative to its size. It has
greater entropy because the more symbols you have, the more unique ways those symbols
could be arranged. Thus, each encoded symbol carries with it more information, and you
need a greater number of distinct codes.

More importantly for our purposes, when you see the term entropy encoding related to
digital media, you should understand it to mean encoding that is based on a statistical
analysis of the file or type of data being encoded. This analysis could yield the frequency
of occurrence of each symbol in an actual file that is to be compressed. Alternatively, the
analysis could yield the probability that certain symbols will appear in a type of file. For ex-
ample, in text files, we can expect that some characters will appear more frequently than
others. The letter e appears frequently in English-language text, while q and x are more
rare. Either type of analysis can be used to create the frequency table upon which entropy
encoding is based. Entropy encoding also implies variable-length codes. The benefit in
compression arises from using shorter codes for more frequently occurring symbols.

Huffman encoding is another type of entropy encoding that is useful in image compression.
We will see in Chapter 3 that it uses the same strategy of statistically based variable-length en-
coding, while improving upon the Shannon-Fano algorithm in the compression rate.

8

2.28

584

256
= 2.28

TABLE 1.11 Codes Resulting from Application
of Shannon-Fano Algorithm

Color Frequency Code

black 100 00

white 100 10

yellow 20 010

orange 5 0110

red 5 1110

purple 3 0111

blue 20 110

green 3 1111
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44 Chapter 1 Digital Data Representation and Communication

1.5.4 Arithmetic Encoding
One drawback to the Shannon-Fano algorithm is that each symbol must be treated individu-
ally; each symbol has its own code, and that code must be represented in an integral number of
bits. Huffman encoding has the same disadvantage. By Shannon’s equation, we may be able to
determine that an optimum encoding is achievable by using a noninteger number of bits for
each code. In our example above, if it were possible to use exactly 1.3561 bits to encode black
and white, 3.6781 bits to encode yellow and blue, 5.6781 bits to encode orange and red, and
6.415 bits to encode purple and green, then we could achieve an optimum compression rate. 

(Each of these values is given by .) The problem is that using the Shannon-Fano 

algorithm, the optimum encoding isn’t possible because we have to use an integer number of
bits for each code.

Arithmetic encoding overcomes some of the disadvantage of the Shannon-Fano algo-
rithm. Like the Shannon-Fano algorithm, arithmetic encoding is based on a statistical
analysis of the frequency of symbols in a file. It differs, however, in that it derives addi-
tional advantage from encoding an entire file (or string of symbols) as one entity rather than
creating a code symbol by symbol.

The idea is that a string of symbols will be encoded in a single floating point number. In
theory, this floating point number can be represented in whatever number of bits is needed
for the compression at hand. To implement this with no limit on the number of bits used,
we would need infinite precision in the representation of floating point numbers, which is
not possible. Let’s put this issue aside for now. Later, we will give a sketch of how arith-
metic encoding is implemented, but for the moment let’s focus on the basic idea.

Arithmetic encoding uses the same strategy as entropy encoding, beginning with a list
of the symbols in the input file and their frequency of occurrence. Say that you have a file
that contains 100 pixels in five colors: black (K), white (W), yellow (Y), red (R), and blue
(B). The frequency of appearance of each color in the file is given in Table 1.12. The fre-
quencies are expressed as numbers between 0 and 1, shown in column two. Each color
symbol is assigned a probability interval whose size corresponds to its frequency of occur-
rence, as shown in column three. The entire range between 0 and 1 is called the probability
range, and the section assigned to one symbol is a probability interval. For example,
black’s probability interval is 0–0.4. (Assume that these are half open intervals, for exam-
ple [0, 0.4)). The order of color symbols in the probability range is not important, as long
as the symbols are given the same order by the encoder and decoder.

log2a 1
pi
b

TABLE 1.12 Frequencies of Colors Relative to Number
of Pixels in File

Color
Frequency Out of Total
Number of Pixels in File

Probability Interval
Assigned to Symbol

black (K) 0.4 0–0.4

white (W) 0.25 0.4–0.65

yellow (Y) 0.15 0.65–0.8

red (R) 0.1 0.8–0.9

blue (B) 0.1 0.9–1.010>100 =

10>100 =

15>100 =

25>100 =

40>100 =
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1.5 Compression Methods 45

Now let’s consider only the first six pixels in the file to make the example manageable.
These pixels have the colors white, black, black, yellow, red and blue—represented by the
symbols W, K, K, Y, R, and B. The arithmetic encoding algorithm assigns a floating point
number to a sequence of symbols by successively narrowing the range between 0 and 1
(Table 1.13). In our example, the first symbol is W. This means that the floating point num-
ber encoding the total string will fall somewhere in the probability interval assigned to W,
between 0.4 and 0.65, as shown at the step 2 of Figure 1.24.

The second symbol is K. At step 2, the range has a size of 0.25, going from 0.4 to 0.65.
K was originally assigned the probability interval 0 to 0.4. Moving to step 3, we want to
narrow the probability range so that it begins at 0.4 and ends at . Thus, the
range at step 3 goes from 0.4 to 0.5. At successive steps, we narrow the range in accor-
dance with the size and position of the symbol just read, as described in Algorithm 1.2. In
the final step, the low value of the range can be taken as the encoding of the entire string.
We’ve cut our example short by considering only the first six pixels in the file, but the idea
is the same.

0.4 + 0.25 * 0.4

Low Value for Probability
interval

White

Black

Black

Yellow

Red

Blue0.4308 + 0.0006 * 1 = 0.43140.4308 + 0.0006 * 0.9 = 0.431340.4314 - 0.4308 = 0.0006

0.426 + 0.006 * 0.9 = 0.43140.426 + 0.006 * 0.8 = 0.43080.432 - 0.426 = 0.006

0 .4 + 0 .04 * 0 .8 = 0 .4320.4 + 0.04 * 0.65 = 0.4260.44 - 0.4 = 0.04

0.4 + 0.1 * 0.4 = 0.440.4 + 0.1 * 0 = 0.40.5 - 0.4 = 0.1

0.4 + 0.25 * 0.4 = 0.50.4 + 0.25 * 0 = 0.40.65 - 0.4 = 0.25

0 + 1 * 0.65 = 0.650 + 1 * 0.4 = 0.41 - 0 = 1

TABLE 1.13 Values for encoding the example problem

Range
High Value for Probability

Interval Symbol

ALGORITHM 1.2

algorithm arithmetic_encoding
/*Input: A string of symbols and their assigned probability intervals. 
Output: A floating point number that encodes the string*/

low 0.0
high 1.0
while input symbols remain {

s the next input symbol
range high – low
/*s_high (s) represents the high value of symbol s’s assigned probability interval,

and s_low (s) represents the low value of symbols’s assigned probability interval. */
high low range * s_high(s)
low low range * s_low(s)

}
return (low � high) 2

}
>

+=

+=

=

=

=

=
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46 Chapter 1 Digital Data Representation and Communication

You can probably see for yourself how decoding would proceed. Given a floating point
number, you can determine the first symbol of the encoded string by finding, from the ini-
tial probability range, the probability interval into which this number fits. Suppose our final
encoding from the previous example was 0.43137. The number 0.43137 fits in the interval
assigned to W, so W is the first symbol from the encoded string. You now remove the scal-
ing of W’s interval by subtracting the low value from W’s probability interval and dividing
by the size of W’s interval, yielding

The value 0.12548 lies in the probability interval of K. Thus, you subtract K’s low range,
0, and divide by the size of K’s interval, 0.4, giving

This value again lies in K’s probability interval.

0.12548>0.4 = 0.3137

(0.43137 - 0.4)>0.25 = 0.12548

0.65
1.0

B B B B B B B

R R R R R R R

Y Y Y Y Y Y Y

W W W W W W W

K

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

K K K K K K

0.9

0.80

0.65

0.4

0.5 0.44 0.432 0.43140.4314

0.4 0.4 0.4 0.426 0.431340.4308

Figure 1.24 Example of arithmetic encoding
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1.5 Compression Methods 47

The computation proceeds as described in the decoding procedure given in Algo-
rithm 1.3, yielding the values in Table 1.14. Although our example worked out nicely, with
a maximum of five digits after the decimal point, you should be able to see that a larger
example would require very high precision arithmetic. In fact, this appears to make arith-
metic encoding impractical in the implementation, but there are ways around the problem.

ALGORITHM 1.3

algorithm arithmetic_decoding
/*Input: A floating point number, f, encoding a string of symbols, a list of symbols
encoded by the number, and the probability intervals assigned to these symbol.
Output: The string of symbols, s, decoded
Assumptions: A terminator symbol has been encoded at the end of the string*/

symbolDecoded NULL
while symbolDecoded ! TERMINATOR_SYMBOL {

s a symbol whose probability interval contains f
output s
/*Let s_high(s) represent the high value of symbol s’s probability interval, and

s_low(s) represent the low value of s’s probability interval*/
range s_high(s) s_low(s)
f (f s_low(s)) / range

}
}

-=

-=

=

=

=

Floating Point Number
f, Representing Code

Symbol Whose
Probability Interval

Surrounds f

0.43137 W 0.4 0.65 0.25

TABLE 1.14 Values for decoding in the example problem

Low Value for
Symbol’s Probability

Interval

High Value for
Symbol’s Probability

Interval

Size of Symbol’s
Probability

Interval

0.12548
(0.43137 - 0.4)>(0.65 - 0.4) = K 0 0.4 0.4

0.3137
(0.12548 - 0)>(0.4 - 0) = K 0 0.4 0.4

0.78425
(0.3137 - 0)>(0.4 - 0) = Y 0.65 0.8 0.15

0.895
(0.78425 - 0.65)>(0.8 - 0.65) = R 0.8 0.9 0.1

0.95
(0.895 - 0.8)>(0.9 - 0.8) = B 0.9 1.0 0.1

Actual implementations use integer arithmetic and bit shifting operations that effectively
accomplish the procedure described here, without requiring infinite precision floating point
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48 Chapter 1 Digital Data Representation and Communication

operations—in fact, without using any floating point operations at all. There are other issues
not discussed here that have been fine-tuned in various implementations, including how to
terminate the input string and how to speed up what can be a time-consuming compression
method. The important facts to note about arithmetic encoding are these:

• Arithmetic encoding is a form of entropy encoding, where the number of bits that a
symbol contributes to the compressed string is proportional to the probability of that
symbol appearing in the original input string.

• In arithmetic encoding, an entire input string is encoded as one value. In comparison,
Huffman encoding—another example of entropy encoding—uses variable-length
codes assigned on a symbol-by-symbol basis.

• Because arithmetic encoding theoretically can encode a symbol in a fractional num-
ber of bits, it is closer to optimal than Huffman encoding.

• Arithmetic encoding can be applied as one step in JPEG compression of photographic
images.

• IBM and other companies hold patents on algorithms for arithmetic encoding.

1.5.5 Transform Encoding
The compression algorithms we have looked at so far are all lossless. With these algo-
rithms, a digital image, audio, or video file can be compressed, and the original data can be
perfectly reconstructed when it is decompressed (not considering rounding errors that may
result from floating point arithmetic).

The disadvantage of lossless methods is that they do not always give enough compres-
sion, especially for large audio and video files. Lossy methods are needed. Fortunately,
these methods are designed so that the information lost is relatively unimportant to the per-
ceived quality of the sound or images.

Lossy methods are often based upon transform encoding. The idea is that changing the
representation of data can sometimes make it possible to extract sounds or visual details
that won’t be missed because they are beyond the acuity of human perception. Thus, this
type of compression begins with a transform of the data from one way of representing it to
another. Two of the most commonly used transforms in digital media are the discrete cosine
transform (DCT) and the discrete Fourier transform (DFT). You should note that it is not
the transform that is lossy. No information is lost in the DCT or DFT. However, when a
transform is used as one step in a compression algorithm, it becomes possible to discard re-
dundant or irrelevant information in later steps, thus reducing the digital file size. This is
the lossy part of the process.

The discrete cosine transform is applied to digital images to change their representa-
tion from the spatial to the frequency domain. We introduced the notion of the frequency
of an image earlier in this chapter, and we will go into more detail in Chapter 2. What we
want to point out here is that transforming image data to the frequency domain with the
DCT can be the first step in compression. Once you have separated out the high fre-
quency components of an image, you can remove them. High frequency components cor-
respond to quick fluctuations of color in a short space—changes that aren’t easy for the
human eye to see. When this information is removed, later steps in the compression (e.g.,
Huffman encoding) are even more effective. What we have just described is the basis of
JPEG compression.
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The discrete Fourier transform is applied to sound, transforming audio data from the
temporal to the frequency domain. With the frequency components separated out, it is pos-
sible to determine which frequencies mask or block out other ones and then discard the
masked frequencies. By this method, transform encoding is followed by perceptual encod-
ing, and the result is a smaller audio file.

1.5.6 Compression Standards and Codecs
Thus far in this chapter, we have looked at types of compression methods and the concepts
behind them. In practice, compression algorithms are implemented in a wide variety of
ways that are fine-tuned and optimized in their details. It is not uncommon for methods to
be used in combination with each other, as is the case with JPEG and MPEG compression,
which combine the DCT, run-length encoding, and Huffman encoding for compression of
photographic images. Some algorithms are standardized by official committees so that the
various implementations all produce files in the same format. If a standardized algorithm is
patented, then commercial companies must pay a license fee to implement the algorithm
and sell it in a commercial product. Two prominent examples of standardized compression
algorithms are DV for camcorder-generated digital video and the family of MPEG algo-
rithms. Arithmetic encoding is an example of an image compression algorithm that is cov-
ered by patents.

Specific implementations of compression algorithms are called codecs—short for
compression/decompression. The word codec is usually reserved for audio/video com-
pression (as opposed to still images), since real-time decompression is just as important
as initial compression with these time-based media. Some codecs are offered as share-
ware or freeware. Most codecs are commercial products. Codecs can be embedded in
image, audio, or video processing programs, or they can be sold and used separately.
Sorenson is an example of a codec that is embedded in other environments (e.g., 
QuickTime) and also available in a professional-grade version that runs apart from other
application programs. The professional-grade Sorenson compressor is actually a suite of
codecs that includes implementations of MPEG and DV compression and the standard
Sorenson codec.

With most codecs, the compression rate can be adjusted by the user in accordance with
the desired quality, up to the maximum compression ability of the codec. The choice may
be offered in terms of quality, perhaps as a percentage or on a scale from one to ten. Alter-
natively, the user may have the option of compressing at different bit rates. The bit rate rep-
resents the number of bits that are transferred per second. Bit rate and compression rate are
inversely related. Increasing the compression rate reduces the bit rate; if there are fewer bits
after the data has been compressed, then fewer bits need to be transferred per second to
play the sound or video in real time. A lower bit rate makes it possible to play the media on
a device that has a relatively low transfer rate—like a CD-ROM rather than a DVD player.
However, the higher the compression rate, the more chance there is that the quality of the
sound will degrade as compared to the original uncompressed audio. Fortunately, compres-
sion algorithms have evolved to the point where they can compress audio and video at a
high rate without unduly sacrificing quality.

Table 1.15 lists examples of standardized or patented algorithms and popular codecs (as
of the writing of this chapter). These algorithms and codecs will be examined more closely
in the chapters on digital audio and digital video.
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TABLE 1.15 Examples of Standardized and Patented Compression Algorithms
and Codecs

Examples of Standardized or Patented Compression Algorithms

LZW and
variants

still images • Lempel, Zev, and
Welch

• varies with input

• works best on images with
large contiguous sections of
the same color

• the basic compression
algorithm for .gif files

• optional compression for
.tiff files

• Unisys held the patent on
LZW until 2003

arithmetic
encoding

still images • evolved through
Shannon, Elias, Jelinek,
Pasco, Rissanen, and
Langdon

• varies with input

• usually better than Huffman
encoding

• a number of variants have
been created, mostly
patented by IBM

MP3 (MPEG -1,
Audio 
Layer III)

audio • invented and
patented by an
institute of the
Fraunhofer Society

• 10:1 or greater compression
rate

• generally used for bit rates
from about 96 to 192 kb/s

• Lame is an open-source MP3
encoder that gives high-
quality compression at bit
rates of 128 kb/s or higher

AAC (Advanced
Audio Coding;
MPEG-2
version updated
to MPEG-4)

audio • patented by Dolby
Labs in cooperation
with other
developers

• generally achieves same
quality as MP3 with a 25–40%
increase in compression rate

• reports bit rates of 64 kb/s
with good quality

• got recognition when used
in Apple’s iPod

• also used in RealAudio for
bit rates >128 kb/s

MPEG-1, 2, 4 audio/video • developed by a
working group of the
ISO/IEC

• see ISO/IEC 11172
(MPEG-1), ISO/IEC 
13818 (MPEG-2),
and ITU-T H.200
(MPEG-4)

• MPEG-1 1.5 Mb/s

• MPEG-2 4 Mb/s

• MPEG-4 5 kb/s to 10 Mb/s

• MPEG7 and 21 are next in
evolution of standard

'

'

' • standards focused primarily
on defining a legal format for
the bitstream and specifying
methods of synchronization
and multiplexing

• implemented in a variety of
ways in codecs such as
DivX and Sorenson

DV (Digital
Video)

• a consortium of 10
companies: Matsushita
(Panasonic), Sony,
JVC, Philips, Sanyo,
Hitachi, Sharp,
Thomson Multimedia,
Mitsubishi, and
Toshiba

• usually 5:1

• like JPEG and MPEG, uses
discrete cosine transform

video • the consumer video format
for camcorder, recorded
onto a cassette tape

• compression is done as
video is recorded

• transferred by Firewire to
computer

Algorithm
Source
Material Developer

Compression Rate and/or
Bit Rate* Comments
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Codec
Source
Material Developer

Compression Rate and/or
Bit Rate* Comments

Examples of Popular Codecs

TABLE 1.15 continued

IMAADPCM
(Interactive
Multimedia
Association
Adaptive
Differential
Pulse Code
Modulation)

audio • Apple, migrated to
Windows

• 4:1 compression of 16 bit
samples

• built into QuickTime

• some incompatibility
between Mac and Windows
versions

• comparable to the ITU
G.726 and G.727
international standard for
ADPCM

• somewhat outdated

Vorbis audio • non-proprietary,
unpatented format
created by Xiph.org
foundation

• bit rate comparable to MP3
and AAC with comparable
quality

• a family of compression
algorithms, the most
successful one being Ogg
Vorbis

FLAC (Free
Lossless Audio
Codec)

audio • non-proprietary,
unpatented format
created by Xiph.org
foundation

• compression rates range
from about 1.4:1 to 3.3:1

• a lossless compression
algorithm

Sorenson video • Sorenson Media • wide variety of compression
rates available, including
very high compression with
good quality

• a suite of codecs available
in a “pro” version

• standard Sorenson codec is
part of QuickTime

• other codecs in the suite
offer MPEG-4 and AVC
compression

Indeo video • Intel, later acquired
by Ligos

• CD-quality compression
(352 240 resolution
NTSC, 1.44 Mb/s bit rate),
comparable to MPEG-1

• you can set compression
quality

*

• faster compression than
Cinepak

• good for images where
background is fairly static

Cinepak video • originally developed
by SupermacRadius

• CD-quality compression • originally good for 2x CD-
ROM

• takes longer to compress
than decompress

• can be applied to
QuickTime and Video for
Windows movies

DivX video • DivX • reports 10:1

• compresses video so that it
can be downloaded over
DSL or cable modem

• uses MPEG-4 standard
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1.6 STANDARDS AND STANDARDIZATION
ORGANIZATIONS FOR DIGITAL MEDIA

In the previous section, we spoke of standards being set for multimedia algorithms and
data so that application programs and hardware are able to communicate with each other.
In your work in multimedia, you’ll encounter references to the organizations and work-
groups that set the standards, so you’ll want to be familiar with their names and
acronyms. The topic of standards is very complicated; whole books are written on the
subject. We just want you to be familiar with the main types of standards and the promi-
nent standardization organizations. If you need to know more in your work, you can take
it from there.

Standards can be divided into three main types: proprietary, de facto, and official.
Proprietary standards are set and patented by commercial companies. Companies lay claim
to their way of doing things and naturally hope to make money from their designs and in-
ventions. The competition for better ways of doing things constantly leads to newer and
better products, though some would argue that too much insistence on proprietary stan-
dards slows development because of lack of coherence and interoperability in the industry.
The patents on LZW compression and arithmetic encoding are examples of proprietary
standards.

The term de facto standard is used to describe a method or format that has become the ac-
cepted way of doing things in the industry without any official endorsement. For example,
TIFF files are considered by many to be the de facto standard for image files. Nearly all
image processing programs and operating systems are equipped to handle TIFF files.

Official standards are developed by large industry consortia and/or government agen-
cies. These organizations can exist on either a national or an international level. The main
international standardization bodies with which you should be familiar are the
International Telecommunications Union (ITU), International Organization for Standard-
ization (ISO, pronounced “eye-so”), and the International Electrotechnical Commission
(IEC).

The ITU (formerly called CCITT) is an international organization where governments
and the private sector coordinate global telecom networks and services. It has some reg-
ulatory power—allocating radio frequency bands, for example. It is divided into three
sectors: ITU-T for telecommunications standards, ITU-R for radiocommunications stan-
dards, and ITU-D for telecommunications development. The standards most relevant to
multimedia are the G and H series. The G series covers speech coding and telephone
communication. For example, the G.700 series relates to the coding of analog to digital
telephone using methods such as ADPCM. The H series is the realm of real-time digital
audio and video communication. For example, H.323 is a standard for voice and video
over packet-switched networks (i.e., the internet). H.262 gives the standard for MPEG
compression.

ISO, an international body that develops industrial and commercial standards, is com-
posed of representatives from various national standards organizations. The American
National Standards Institute (ANSI) is the agency representing the United States. Work-
ing closely with ISO is the IEC, which formulates standards for electrical, electronic, and
related technologies. ISO and the IEC have formed a joint committee called ISO/IEC
JTC1, and through this committee they develop standards in information technology. For
example, their ISO/IEC 11172 standard defines MPEG-1, and ISO/IEC 13818 defines
MPEG-2.
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Using MATLAB to
model digital sound
and images

interactive tutorial
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1.7 MATHEMATICAL MODELING TOOLS FOR THE
STUDY OF DIGITAL MEDIA

This book focuses on the mathematics, science, and algorithms behind digital media to give
you greater understanding of and control over your work environment. As you make your
way through the remaining chapters, you may often find it helpful to graph functions, visu-
alize waveforms, and solve problems with real values so that you can see the results for
yourself rather than just talking about abstractions. Mathematical modeling tools are help-
ful in this regard. A widely used tool for this purpose is MATLAB. The online tutorial as-
sociated with Chapter 1 shows you how to use MATLAB to model waveforms. Even if you
don’t have access to MATLAB, you should go through this tutorial because it contains an
introduction to waveforms used to model digital sound and images. (Octave is free soft-
ware that works similarly to MATLAB.)

With the names, terminology, and basic concepts covered in Chapter 1, you should be
ready now to look more deeply into each medium. Pick your focus, or cover it all, and don’t
forget to look at the online learning supplements, including worksheets, creative exercises,
and interactive demos and tutorials.

Modeling images
as waveforms

mathematical
modeling
worksheet

Σ

eiθ

θ

Modeling sound
as a waveform

mathematical
modeling 
worksheet

Σ

eiθ

θ

EXERCISES
1. What is the frequency of the sine wave below, in cycles per second? What is its angu-

lar frequency?
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Figure 1.25 Sine wave

2. What is the equation for a sine wave that has a frequency of 660 Hz?

3. You have a digital image in eight-bit color that has blocky areas of color, lacking the
subtle gradations from one color to the next that you would like to see. Is this a mat-
ter of aliasing or quantization error? Explain.

4. If you are recording an audio file and you expect that the highest frequency in the file
will be 10,000 Hz, what is the minimum sampling rate you can use to ensure that you
won’t get audio aliasing?

Exercises 53
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5. How many different colors can be represented with 12 bits?

6. True or false? You can’t represent as wide a range of colors with eight bits as you can
with 16 bits. Explain your answer.

7. According to the definitions of kilobytes, megabytes, and gigabytes used by computer
scientists, 4,276,012,000 bytes is equal to approximately how many kilobytes, how
many megabytes, and how many gigabytes?

8. What is the signal-to-noise ratio of a sound file represented with eight bits per
sample?

9. Compute the number of bytes needed for one minute of uncompressed video that has
pixels per frame, 25 frames per second, three bytes per pixel, and CD-

quality stereo audio.

10. What is the data rate of a communication medium with a bandwidth of 3 MHz using
4 different signal levels?

11. Do a run-length encoding of the following sequence of grayscale values. Explain your
encoding strategy, and compute the compression rate.

240 240 240 240 240 240 240 238 238 238 238 238 230 230 230 230 229 228 
228 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227
227 227

12. Do a Shannon-Fano encoding of an image file on the basis of the frequency table
below. Fill in the table below using Shannon’s entropy equation. Then compare the
average number of bits per color arising from your encoding with the minimum pos-
sible average number of bits derived from Shannon’s entropy equation.

720 * 576

54

Color Frequency

Optimum Number
of Bits to Encode
This Color

Relative Frequency
of the Color in
the File

Product of
Columns 3
and 4

black 200

white 175

yellow 90

orange 75

red 70

purple 35

blue 20

green 10

13. Say that you have an image that has 100 pixels. The first six colors of the image are
W K Y B R Y. Do the first six steps of arithmetic encoding based on the frequency
table on next page.
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Color
Frequency Out of Total
Number of Pixels in File

Probability Interval
Assigned to Symbol

black (K) 0–0.4

white (W) 0.4–0.7

yellow (Y) 0.7–0.85

red (R) 0.85–0.95

blue (B) 0.95–1.0 5>100 = 0.05

 10>100 = 0.1

15>100 = 0.15

 30>100 = 0.3

 40>100 = 0.4

14. Computer technology changes very quickly. At the time of the writing of this book,
Table 1.8 and Table 1.9 list data rates for common communication links and storage
devices. Do some research to determine if new technology is now available that gives
faster data rates, and update the tables accordingly.

15. The arithmetic encoding algorithm described in this chapter operates as if your com-
puter is capable of infinite precision arithmetic, which of course it is not. Do some
research to find out how this algorithm is made practical.

16. Using MATLAB to model digital sound and images, interactive tutorial, online

17. Modeling sound as a waveform, mathematical modeling exercise, online

18. Modeling images as waveforms, mathematical modeling exercise, online

APPLICATIONS

1. Take inventory of the software available to you for work in digital media, in the fol-
lowing categories:

• digital image processing
• vector graphics
• digital sound processing
• digital video
• multimedia programming

What software was included on your computer when you bought it? What software is
available in computer labs to which you have access? What type of multimedia work
would you like to do? What software do you need for this work? Compare the features
of the products in each category. Do some web research to find out what is available
and what each piece of software costs. What can you afford? If there are types of soft-
ware that are out of your price range, see if you can find scaled-down versions that are
less expensive, or freeware or shareware alternatives. If you simply want to experi-
ment with certain application programs, find out if trial versions are available. Often,
you can use a trial version for 30 days, although sometimes these versions don’t offer
all the features of the full program.

2. Look at the specifications of your computer and other hardware to determine its suit-
ability for work in digital media, in the following categories:

• amount of RAM
• amount of hard disk space
• processor speed
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Does your computer meet the minimum requirements of the digital media software
you’d like to use?

3. As you work through this book, you’ll be learning how to create and edit digital im-
ages, sound, and video. The last chapter will introduce you to multimedia authoring
languages like Director, Flash, and Java, where you can put together your images and
sound. One way to tie all of your learning together is to develop a long-term project
as you work through the book. Here are some suggestions:

• a game program (e.g. Tic-Tac-Toe, Othello, Mancala, Connect Four, Master Mind,
or a Solitaire)

• an interactive tutorial (e.g., “How to Do Long Division,” “How to Change a Tire,”
or whatever you want to teach)

• your own interactive résumé and/or portfolio of your work
• an interactive commercial website

Plan a project that will tie together the media that you study in this book. Decide what
media you need for your project. Just for practice, you might want to incorporate 
as many different types of media as possible—digital photographs, vector graphic
animations, digital audio, MIDI, and digital video. As you go through the chapters on
each medium, develop the material you’ll need for your project. For example, if
you’re creating a game program for, say, a checkers game, you could create digital im-
ages for the splash screen as you work through Chapters 2 and 3, digital audio and
MIDI-generated music as you work through Chapters 4 and 5, and digital video as
you work through Chapters 6 and 7. Then in Chapter 8, you’ll learn how to weave
these together with multimedia authoring environments and languages.

Additional exercises or applications may be found at the book or author’s website.
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